首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The harmonic emission from thin solid carbon and aluminum foils, irradiated by 150 fs long frequency-doubled Ti:sapphire laser pulses at lambda=395 nm and peak intensities of a few 10(18) W/cm(2), has been studied. In addition to the harmonics emitted from the front side in the specular direction, we observe harmonics up to the 10th order, including the fundamental from the rear side in the direction of the incident beam, while the foil is still strongly overdense. The experimental observations are well reproduced by particle-in-cell simulations. They reveal that strong coupling between the laser-irradiated side and the rear side occurs via the nonlocal electron current driven by the laser light.  相似文献   

2.
A measurement of the decay in time of nuclei excited by an intense short laser pulse of energy E0E0 yields the Fourier transform of the autocorrelation function of the associated scattering matrix. We determine the optimal length (in time) of the pulse and evaluate the time-decay function using random-matrix theory. That function is shown to contain information not otherwise available. We approximate that function in a manner that is useful for the analysis of data. For E0E0 below the threshold energy EnEn of the first neutron channel, the time-decay function is exponential in time t while it is the product of an exponential and a power in t   for E0>EnE0>En. The comparison of the measured decay functions in both energy domains yields an unambiguous and novel test of random-matrix theory in nuclei.  相似文献   

3.
4.
The invention of high-power, ultra-short-pulse lasers has opened the way to investigations aimed at the creation of a new type of bright X-ray source for various uses including material science applications and time-resolved X-ray diffraction for biology. The efficiency with which laser energy incident on a solid target is converted into an X-ray emission depends on many factors, including the temporal profile of the laser pulse. Here we report the results of our theoretical and experimental investigations of the line X-ray emission from layered solid targets irradiated by ultra-short laser pulses. The laser prepulse parameters and target thickness are optimized to convert the maximum laser energy into an emission in the selected X-ray line. Multilayer foils are proposed to increase the energy of the K-line emission from laser plasma while simultaneously keeping the X-ray pulse duration at a hundred femtoseconds. The emission is studied both experimentally and theoretically by means of an analytical model and numerical simulations. PACS 52.38.Ph; 52.38.Dx; 52.50.Jm  相似文献   

5.
Ph. Korneev 《Laser Physics》2012,22(1):184-194
The problem of harmonics generation in nanotargets is considered at the range of parameters (a nanotarget diameter and a pump laser intensity) when the oscillation amplitude of an electron in a target is much larger than the target width. Electron motion in charged nanotargets in the presence of a laser field of different (non-relativistic) strength is considered. It is demonstarted that for lasers of infrared frequencies clusters do not possess strong enough potential to bound electrons with large oscillation amplitudes. Opposite to clusters, nanofilms were found to be very perspective targets in the problem considered. A simple analytic model and molecular dynamic simulations showed increased harmonics generation when the oscillation amplitude of electrons in a film becomes much larger, than the film width. Different regimes of generation are briefly discussed.  相似文献   

6.
We report on measurements of source sizes and charge state distributions of ions accelerated from thin foils irradiated by ultrashort (100–300 fs) high-intensity (1-6×1019 W/cm2) laser pulses. The source sizes of proton and carbon ion beams originating from hydrocarbon contaminants on the surfaces of 5 m thick aluminum foils were investigated using the knife-edge method. For low-energy protons and low-carbon charge states, the source area was found to exceed the focal spot area by a factor of 104. For the determination of charge state distributions, sandwich targets consisting of a 25 m thick tungsten layer, a 2-nm thin beryllium layer, and again a tungsten layer whose thickness was varied were used. These targets were resistively heated to remove the light surface contaminants. Peaked energy spectra of oxygen and argon ions corresponding to the equilibrium distribution after propagation through matter were observed. PACS 41.75.Jv; 52.38.Kd; 52.25.Jm; 52.50.Jm; 52.70.Nc; 41.75.Ak  相似文献   

7.
Experimental results are presented for proton acceleration from the back of a target irradiated by laser pulses with intensities up to 2 × 1019 W/cm2 generated by the SOKOL-P facility. The proton acceleration efficiency increases with decreasing of the target thickness. However, thin targets are destroyed by the amplified spontaneous emission (ASE) prepulse before the main pulse arrival. An additional optical switch based on a Pockels cell has been used in the amplification section to carry out the experiments with ultrathin foils. As a result, the energy contrast with respect to the ASE prepulse has been increased up to 4 × 106. Owing to high contrast, the experiments on studying proton acceleration from foils with thicknesses less than 100 nm have been carried out.  相似文献   

8.
An analytic expression for the transmission coefficient as a function of the foil thickness d describing penetration of intense femtosecond laser pulses through ultra-thin foils with a thickness of the order of 30–100 nm is derived using the Vlasov-Boltzmann equation. It is found that the transmission of laser radiation stops at the skin depth c/ω p , but sharp and narrow resonances occur for the foil thickness d > c/ω p with the transmission coefficient T = 1. The article is published in the original.  相似文献   

9.
MeV-proton production from solid targets irradiated by 100-fs laser pulses at intensities above 1x10(20) W cm(-2) has been studied as a function of initial target thickness. For foils 100 microm thick the proton beam was characterized by an energy spectrum of temperature 1.4 MeV with a cutoff at 6.5 MeV. When the target thickness was reduced to 3 microm the temperature was 3.2+/-0.3 MeV with a cutoff at 24 MeV. These observations are consistent with modeling showing an enhanced density of MeV electrons at the rear surface for the thinnest targets, which predicts an increased acceleration and higher proton energies.  相似文献   

10.
在强激光与等离子体相互作用研究中,文章作者从实验上首次观测到沿靶面方向发射的高能超热电子束.该电子束只有在等离子体电子密度标长较短的条件下才会出现.数值模拟表明,靶表面电磁场的约束作用是产生这束电子的主要原因.这一结果有助于加深对激光惯性约束聚变快点火实验中的锥靶物理过程的理解,并有潜在的应用前景.  相似文献   

11.
Following the interaction of superintense, short pulse lasers and plasmas, ions can be accelerated to velocities sufficient to drive nuclear fusion reactions, in particular, by the process of Coulomb explosion of clusters [T. Ditmire, Nature (London) 398, 491 (1999)]]. We show here how short bursts of neutrons can be produced using a jet of low-density deuterated methane clusters. Ion velocity distributions were simultaneously measured by a Thomson parabola mass spectrometer, demonstrating deuteron energies up to 120 keV. We show that, in such conditions, nuclear fusion will occur not only in the hot plasma core, but also in the cold outer region by collision processes.  相似文献   

12.
在强激光与等离子体相互作用研究中,文章作者从实验上首次观测到沿靶面方向发射的高能超热电子束.该电子束只有在等离子体电子密度标长较短的条件下才会出现。数值模拟表明,靶表面电磁场的约束作用是产生这束电子的主要原因。这一结果有助于加深对激光惯性约束聚变快点火实验中的锥靶物理过程的理解,并有潜在的应用前景。  相似文献   

13.
ABSTRACT

Modification of Ti foils irradiated by intense energetic heavy ion (HI) beams in long-term experiments has been considered. The experiments on the synthesis of superheavy nuclei, which are carried out in Dubna with a gas-filled recoil separator (DGFRS), determine the conditions of such experiments. High intensities of HIs passing through a relatively small area and thickness of the foils, as well as their heating by a beam, are inherent in such experiments. The ability of the foils to withstand radiation damages, sputtering, and evaporation of atoms becomes questionable. All the processes seem to be dependent on temperature, and none of them is independent of the others, but they can be considered separately. In this work, sputtering yields are estimated on the grounds of available models and experimental data and compared with the results of measurements carried out to verify the estimates. The foil temperature, in turn, can be estimated in the conditions of pulse heating followed by subsequent cooling with radiation emitted from their surfaces. These conditions correspond to the rotating Ti entrance window irradiated by a continuous HI beam in the DGFRS experiments.  相似文献   

14.
Simulations show enhanced free-free and free-bound x-ray emission from laser-produced plasmas for both porous and solid targets irradiated by picosecond laser pulses under different prepulse conditions. The porous targets are modeled as a thick solid substrate over-coated with a thin porous layer. Using porous targets and prepulses shows that x-ray yields can be enhanced significantly over single pulses on solid density targets. The optimum conditions of prepulse and porous layer density are investigated by simulations with a fluid and atomic physics code.  相似文献   

15.
Photoelectron energy spectra resulting by the interaction of hydrogen with two short pulses having carrier frequencies, respectively, in the range of the infrared and XUV regions have been calculated. The effects of the pulse duration and timing of the X-ray pulse on the photoelectron energy spectra are discussed. Analysis of the spectra obtained for very long pulses show that certain features may be explained in terms of quantum interferences in the time domain. It is found that, depending on the duration of the X-ray pulse, ripples in the energy spectra separated by the infrared photon energy may appear. Moreover, the temporal shape of the low frequency radiation field may be inferred by the breadth of the photoelectron energy spectra.  相似文献   

16.
17.
采用飞秒激光辐照铜靶,利用电子角分布仪和LiF热释光探测器测量了快电子发射的发散角.实验结果显示,快电子的发散角与激光入射角密切相关,随着激光入射角增加,快电子的发散角逐渐减小.在相同入射角条件下,加上预脉冲将导致快电子的发散角变小.这个结果为获取较小发散角的快电子束提供了实验参考.  相似文献   

18.
19.
 响应度R是反映探测器性能的一项重要指标,当探测器被强激光损伤后,光电探测器的响应度将发生改变。设计了一套实时测量探测器响应度的装置,用能量逐渐增加的Nd∶YAG激光辐照PIN光电探测器,获得了探测器响应度与入射强激光功率密度的变化关系。从实验数据可知,探测器被功率密度低于7.6×105W/cm2的激光辐照后不会发生损伤,探测器对532nm参考光的响应度不变;当激光的功率密度超过1.27×106W/cm2时,激光辐照后,探测器对532nm参考光的响应度开始下降,当探测器被功率密度为6.01×106W/cm2的激光辐照后,响应度迅速下降,PN结遭到破坏是探测器响应度下降的根本原因,扫描电镜的结果与我们的分析相一致。  相似文献   

20.
李昆  李玉同  张军  远晓辉  徐妙华  王兆华  张杰 《物理学报》2006,55(11):5909-5916
研究了P偏振、S偏振和圆(C)偏振态下亚相对论强度飞秒激光脉冲与铝靶相互作用时产生的超热电子的能谱和靶背向角分布,并对S偏振产生的超热电子的特殊角分布通过引入表面磁场的概念进行了定性解释. 关键词: 超短超强激光 等离子体 超热电子 表面磁场  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号