首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
颜波 《物理》2021,(1):31-36
文章从超冷原子研究的视角出发,回顾了用"从下到上"的方案来开展量子模拟研究的历史。超冷原子作为宏观量子态,各个自由度精确可控,是量子模拟的绝佳平台。光晶格将冷原子物理和凝聚态物理融合起来,是其中最重要的技术之一,为超冷原子量子模拟提供了一个扎实的落脚点。近年来,关于拓扑量子模拟的研究日益兴起,成为超冷原子量子模拟新的重要方向。文章介绍这方面近期的一些工作进展。最后分享作者对超冷原子量子模拟的一些思考。  相似文献   

2.
We propose a total measure of multi-particle quantum correlation in a system of N two-level atoms (N qubits). We construct a parameter that encompasses all possible quantum correlations among N two-level atoms in arbitrary symmetric pure states and define its numerical value to be the total measure of the net atom-atom correlations. We use that parameter to quantify the total quantum correlations in atomic Schrödinger cat states, which are generated by the dispersive interaction in a cavity. We study the variation of the net amount of quantum correlation as we vary the number of atoms from N=2 to N=100 and obtain some interesting results. We also study the variation of the net correlation, for fixed interaction time, as we increase the number of atoms in the excited state of the initial system, and notice some interesting features. We also observe the behaviour of the net quantum correlation as we continuously increase the interaction time, for the general state of N two-level atoms in a dispersive cavity.  相似文献   

3.
We study, in the framework of open quantum systems, the dynamics of quantum entanglement and quantum discord of two mutually independent circularly accelerated two-level atoms in interaction with a bath of fluctuating massless scalar fields in the Minkowski vacuum. We assume that the two atoms rotate synchronically with their separation perpendicular to the rotating plane. The time evolution of the quantum entanglement and quantum discord of the two-atom system is investigated. For a maximally entangled initial state, the entanglement measured by concurrence diminishes to zero within a finite time, while the quantum discord can either decrease monotonically to an asymptotic value or diminish to zero at first and then followed by a revival depending on whether the initial state is antisymmetric or symmetric. When both of the two atoms are initially excited, the generation of quantum entanglement shows a delayed feature, while quantum discord is created immediately. Remarkably, the quantum discord for such a circularly accelerated two-atom system takes a nonvanishing value in the steady state, and this is distinct from what happens in both the linear acceleration case and the case of static atoms immersed in a thermal bath.  相似文献   

4.
We investigate the dynamics of the precision of the parameter estimation in many driven atoms, each of which interacts with a local structured bosonic reservoir respectively. The evolution of quantum states for single driven atom is described by the time local quantum master equation. The dynamics of the quantum Fisher information for many entangled atoms is obtained by means of the supreoperator mapping. The estimation limit is superior to the standard quantum limit during a characteristic interval. At a given time, the precision of parameter estimation can be improved to a maximal value if the number of entangled atoms is chosen to be an optimal value. The optimal number of entangled atoms is determined by the dynamical property. The decay of quantum Fisher information is accelerated with the increase of the number of entangled atoms.  相似文献   

5.
用腔场QED技术实现量子信息转移   总被引:9,自引:0,他引:9       下载免费PDF全文
向少华  宋克慧 《物理学报》2005,54(3):1190-1193
提出了一种量子信息转移方案,它是基于两个耦合的二能级原子同时与单模腔场发生大失谐相互作用实现的.通过控制腔场与双原子的相互作用时间,量子信息可以从一个原子转移到另一个原子,或从单模腔场转移到双原子纠缠态上,而包含在欲转移量子态上的信息被完全檫除. 关键词: 大失谐Jaynes Cummings模型 量子信息转移 偶极 偶极相互作用  相似文献   

6.
We load atoms into every site of an optical lattice and selectively spin flip atoms in a sublattice consisting of every other site. These selected atoms are separated from their unselected neighbors by less than an optical wavelength. We also show spin-dependent transport, where atomic wave packets are coherently separated into adjacent sites according to their internal state. These tools should be useful for quantum information processing and quantum simulation of lattice models with neutral atoms.  相似文献   

7.
We review recent theoretical advances in cold atom physics concentrating on strongly correlated cold atoms in optical lattices. We discuss recently developed quantum optical tools for manipulating atoms and show how they can be used to realize a wide range of many body Hamiltonians. Then, we describe connections and differences to condensed matter physics and present applications in the fields of quantum computing and quantum simulations. Finally, we explain how defects and atomic quantum dots can be introduced in a controlled way in optical lattice systems.  相似文献   

8.
We study the dynamics of quantum discord and entanglement of two entangled two-level atoms within two isolated and dissipative cavities in the weak- or strong-coupling regime. The quantum entanglement are measured by concurrence and relative entropy. The quantum discord of two atoms based on quantum mutual information and relative entropy are also calculated. In the weak-coupling regime, the sudden death of quantum discord and entanglement of two atoms can occur simultaneously within a short interaction time. When the interaction time is long, quantum discord and entanglement of two atoms could be partially preserved due to the long-lived nature of quantum discord and entanglement. However, in the strong-coupling regime, there is no sudden death of quantum discord though the entanglement sudden death phenomenon occurs. In addition, we observe that entanglement and discord will be destroyed eventually when the atom-field interactions are strong. We also address the issue of experimental realization briefly.  相似文献   

9.
We apply concepts of quantum optical coherence to characterize the coherent generation of a molecular field from a quantum-degenerate atomic sample, and discuss the impact of the quantum statistics of the atoms on that field. For atoms initially in a BEC the resulting molecular field is to a good approximation coherent. This is in sharp contrast to the case of atoms in a normal Fermi gas, where we can made use of an analogy with the Tavis-Cummings model to show that the statistics of the resulting molecular field is similar to that of a single-mode chaotic light field. The BCS case interpolates between the two extremes, with an 'incoherent' contribution from unpaired atoms superposed to a 'coherent' contribution from atomic Cooper pairs. We also comment on the temporal fluctuations characteristic of the formation of molecular dimers from ultracold fermionic atoms.  相似文献   

10.
We review novel methods for the investigation, control and manipulation of neutral atoms in optical lattices. These setups allow unprecedented quantum control over large numbers of atoms and thus are very promising for applications in quantum information processing. After introducing optical lattices we discuss the superfluid (SF) and Mott insulating (MI) states of neutral atoms trapped in such lattices and investigate the SF-MI transition as observed experimentally recently. In the second part of the paper we give an overview of proposals for quantum information processing and show different ways to entangle the trapped atoms, in particular the usage of cold collisions and Rydberg atoms. Finally, we discuss briefly the implementation of quantum simulators, entanglement enhanced atom interferometers, and ideas for robust quantum memory in optical lattices.  相似文献   

11.
We propose a scheme for realization a quantum Controlled-NOT gate operation using two four-level atoms through a selective atom cavity interaction in cavity quantum electrodynamics system. In our protocol, the quantum information is encoded on the stable ground states of the two atoms. During the interaction between atoms and single-mode vacuum cavity-field, the atomic spontaneous emission is negligible as the large atom-cavity detuning effectively suppresses the spontaneous decay of the atoms. The influences of the dissipation and the deviation of interaction time on fidelity and corresponding success probability of the quantum Controlled-NOT gate and the experimental feasibility of our proposal are also discussed.  相似文献   

12.
We apply the classical field method to simulate the production of correlated atoms during the collision of two Bose-Einstein condensates. Our nonperturbative method includes the effect of quantum noise, and describes collisions of high density condensates with very large out-scattered fractions. Quantum correlation functions for the scattered atoms show that the correlation between pairs of atoms of opposite momentum is rather small. We also predict the existence of quantum turbulence in the field of the scattered atoms.  相似文献   

13.
We investigate a two-level atom interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence and find that a stationary quantum discord can arise in the interaction of the atom and cavity field as the time turns to infinity.We also find that the stationary quantum discord can be increased by applying a classical driving field.Furthermore,we explore the quantum discord dynamics of two identical non-interacting two-level atoms independently interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence.Results show that the quantum discord between two atoms is more robust than entanglement under phase decoherence and the classical driving field can help to improve the amount of quantum discord of the two atoms.  相似文献   

14.
钱懿  许晶波 《中国物理 B》2012,21(3):30305-030305
We investigate a two-level atom interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence and find that a stationary quantum discord can arise in the interaction of the atom and cavity field as the time turns to infinity. We also find that the stationary quantum discord can be increased by applying a classical driving field. Furthermore, we explore the quantum discord dynamics of two identical non-interacting two-level atoms independently interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence. Results show that the quantum discord between two atoms is more robust than entanglement under phase decoherence and the classical driving field can help to improve the amount of quantum discord of the two atoms.  相似文献   

15.
We investigate the dynamics of quantum discord in a system consisting of two Tavis-Cummings models, each of which contains two atoms driven by a classical field. We compare the dynamics of quantum discord for the system with that of entanglement and show that quantum discord vanishes only asymptotically although entanglement disappears suddenly during the time evolution. Furthermore, we examine the influence of the initial states and the classical field on the discord dynamics and find that the value of quantum discord can be improved by adjusting the classical driving field. Finally, the quantum discord of two atoms in dissipative cavity is also discussed.  相似文献   

16.
By taking into account spatial degrees of freedom of the atoms, we study the dynamics of the quantum correlation between the electronic states of two atoms, separately placed in two single-mode ring cavities. We show that the quantum correlation of the atomic electronic states can decay to almost zero in a finite time, and the quantum correlation between the cavities depends on the spatial spread of the atoms.  相似文献   

17.
对于一个三能级原子体系,原子的两个基态能级通过微波耦合起来,其中一个基态能级可被激发到里德堡态,从而可观察量子跳跃现象.本文采用量子轨线方法研究了微波调制的里德堡原子集体量子跳跃.研究结果表明,微波耦合基态能级可以提高光子关联,增强光子聚束效应,即使较少的原子中也可以观察到系统在高里德堡占据数态和低里德堡占据数态之间的切换.这一结果为将来进一步研究里德堡自旋晶格中的多体动力学提供了新思路.  相似文献   

18.
靳丽娟  方卯发 《中国物理》2006,15(9):2012-2017
We investigate the entanglement in a system of two coupling atoms interacting with a single-mode field by means of quantum information entropy theory. The quantum entanglement between the two atoms and the coherent field is discussed by using the quantum reduced entropy, and the entanglement between the two coupling atoms is also investigated by using the quantum relative entropy. In addition, the influences of the atomic dipole--dipole interaction intensity and the average photon number of the coherent field on the degree of the entanglement is examined. The results show that the evolution of the degree of entanglement between the two atoms and the field is just opposite to that of the degree of entanglement between the two atoms. And the properties of the quantum entanglement in the system rely on the atomic dipole--dipole interaction and the average photon number of the coherent field.  相似文献   

19.
We quantify multiparticle quantum entanglement in a system of N two-level atoms interacting with a squeezed vacuum state of the electromagnetic field. We calculate the amount of quantum entanglement present among one hundred such two-level atoms and also show the variation of that entanglement with the radiation field parameter. We show the continuous variation of the amount of quantum entanglement as we continuously increase the number of atoms from N = 2 to N = 100. We also discuss that the multiparticle correlations among the N two-level atoms are made up of all possible bipartite correlations among the N atoms.  相似文献   

20.
In this article, a system of two two-level atoms interacting with a single-mode quantized electromagnetic field in a lossless resonant cavity via a multi-photon transition is considered. The quantum Fisher information, negativity, classical Fisher information, and reduced von Neumann entropy for the two atoms are investigated. We found that the number of photon transitions plays an important role in the dynamics of different information quantifiers in the cases of two symmetric and two asymmetric atoms. Our results show that there is a close relationship between the different quantifiers. Also, the quantum and classical Fisher information can be useful for studying the properties of quantum states which are important in quantum optics and information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号