首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present results of the deuteron nuclear magnetic resonance (NMR) and small-angle X-ray scattering (SAXS) study of ordering and phase transition behavior of octylcyanobiphenyl (8CB) liquid crystal confined to a controlled-pore glass (CPG) with nontreated and silanes-treated pore surfaces. The deuteron NMR spectra allowed to determine the degree of nematic liquid crystal ordering and also provided an indirect information on the confined 8CB smectic ordering via its influence on the nematic ordering. For the smectic phase these data are supplemented with measurements of the temperature dependence of the first-order SAXS diffraction pattern. The NMR results indicate that the average nematic and smectic order parameters of 8CB in the nontreated CPG are only weakly perturbed by the confinement. The SAXS data further suggest that in confined 8CB for both nontreated and silane-treated CPG a domainlike pattern appears in accordance with the Imry-Ma theorem.  相似文献   

2.
An expression for the surface excess stress tensor for planar compressible interfaces between rod-like nematic liquid crystals and isotropic viscous fluids is derived using the classical surface excess theory formalism, adapted to capture the intrinsic anisotropy of the nematic orientational ordering. A required step in the theory is to find the actual stress tensor in the three-dimensional interfacial region, which is obtained by a decomposition of the kinematic fields (rate of deformation tensor and director Jaumann derivative) into tangential, normal, and mixed components with respect to the interface. The viscosity coefficients appearing in the surface excess stress tensor are expressed in terms of interfacial and bulk viscosities for planar, constant orientation, flows. The expressions are used to define the three fundamental surface excess Miesowicz shear viscosities, in analogy with the three bulk Miesowicz shear viscosities. The ordering in the magnitudes of the surface excess Miesowicz shear viscosities is shown to depend on the magnitude of the surface scalar nematic order parameter relative to that of the adjoining bulk nematic phase. When the surface scalar order parameter is greater than in the bulk, the classical ordering in terms of magnitudes of the three bulk Miesowicz shear viscosities is recovered. On the other hand, when the surface scalar order parameter is smaller than in the bulk, the classical ordering in terms of magnitudes of the three viscosities does not hold, and inequality transitions are predicted as the surface scalar order parameter increases towards the bulk value. Received 5 July 1999 and Received in final form 16 November 1999  相似文献   

3.
By means of specific heat spectroscopy, we have studied the dynamics of nematic 8CB nucleated, in the presence of random disorder, as the temperature is lowered across the isotropic to nematic phase transition such that the crossover region of random dilution to random field regimes of disorder strength is explored. We show, in terms of frequency dependence, hysteretic behavior, and aging effects, that the out-of-equilibrium properties of the nematic nucleated in the random disorder regime are strongly reminiscent of the bulk material while the one grown in the random field regime shows a glassy behavior with aging leading to slower dynamics. The aging effect has been explained in terms of strain relaxation in analogy with observations in other soft glassy colloidal systems.  相似文献   

4.
Photoactive nanofilled nematic is proposed. Stable three-component photoresponsive nanocomposite was prepared from photo-insensitive nanofilled nematic by inclusion of 3?wt.% azobenzene-containing photoactive mesogen 4-(4′-ethoxyphenylazo)phenyl hexanoate (EPH). The host nanofilled nematic was produced from the room-temperature nematic liquid crystal 4-n-heptyl cyanobiphenyl (7CB) and 3?wt.% filler of Aerosil 300 hydrophilic silica nanospheres of size 7?nm. Apparent effect of stimulation with a relatively weak continuous illumination by UV light (375?nm wavelength) takes place for both the alternating-current electric field-dependent optical transmittance and the electro-optic amplitude-frequency modulation by thin films (25?µm thick) of the EPH/aerosil/7CB nanocomposite. The light-stimulated electro-optics of EPH-doped aerosil/7CB films and the corresponding reversible light control are achieved through trans-cis-trans photoisomerization of the photoactive agent EPH. As such, the initial electro-optical response of the studied photoactive nanocomposites is recovered with continuous blue-light illumination. The examined EPH/aerosil/7CB nanocomposites exhibit photo-controllable electro-optical response that is of practical interest.  相似文献   

5.
Symmetry of a nematic liquid crystal phase is broken by an anchoring wall and also by an external field. Nematic system sandwiched between biaxial anchoring walls is introduced as a correspondent to a bulk nematic system exposed to a couple of fields, an electric field and a magnetic one in directions perpendicular to each other, and thermal behaviours of the system are studied. The crossover between a homeotropic structure and homogeneous one occurs, similarly to the bulk system in the fields, in which the anchoring condition of coexistence is shown to have the same expression as the one at the bulk. As to a characteristic phenomenon at the sandwiched system, it is proved that an appearance of a biaxial nematic order suppresses a uniaxial nematic order. A surface transition, i.e., a wetting phenomenon is shown to occur also in the biaxial nematics, even though the uniaxial order is suppressed therein.  相似文献   

6.
7.
We have used atomistic molecular-dynamics simulations to model the detailed molecular configuration of 5CB (4-n-pentyl-4'-cyanobiphenyl) molecules in the form of a nanoscopic liquid crystal droplet in a vacuum microgravity environment. We find the equilibrium state of droplets consisting of as few as 26 or 50 molecules to exhibit significant nematic ordering. The shape of the droplets is also anisotropic, but there is little angular correlation between the nematic director and the long axis of the droplet. Some tendency to micelle formation is observed in droplets of 50 molecules.  相似文献   

8.
We study the phase ordering colloids suspended in a thermotropic nematic liquid crystal below the clearing point and the resulting aggregated structure. Small () PMMA particles are dispersed in a classical liquid crystal matrix, 5CB or MBBA. With the help of confocal microscopy we show that small colloid particles densely aggregate on thin interfaces surrounding large volumes of clean nematic liquid, thus forming an open cellular structure, with the characteristic size of inversely proportional to the colloid concentration. A simple theoretical model, based on the Landau mean-field treatment, is developed to describe the continuous phase separation and the mechanism of cellular structure formation. Received 13 March 2000 and Received in final form 6 June 2000  相似文献   

9.
We review the main features of very thin nematic liquid-crystalline films on solid substrates, focusing on 5CB on oxidized silicon wafers. By discussing the theoretical aspects of the observed structures, we show that the phenomena at work include isotropic capillary condensation and that the coexistence of isotropic and nematic terraces in thin films is a result of the interplay of several mechanisms. Further theoretical as well as experimental efforts are needed to completely understand the wetting behavior of these systems.Received: 1 August 2003PACS: 68.08.Bc Wetting - 68.15. + e Liquid thin films - 61.30.Hn Surface phenomena in liquid crystals including anchoring, anchoring transitions, surface-induced layering, surface-induced ordering, wetting, prewetting transitions, and wetting transitions  相似文献   

10.
We study the effect of random porous matrices on the ordering in nematic liquid crystals. The randomness destroys orientational long-range order and drives the liquid crystal into a glass state. We predict two glass phases, one of which possesses quasi-long-range order. In this state the correlation length is infinite and the correlation function of the order parameter obeys a power dependence on the distance. The small-angle light-scattering amplitude diverges but slower than in the bulk nematic. In the uniaxially strained porous matrices two new phases emerge. One type of strain induces an anisotropic quasi-long-range-ordered state while the other stabilizes nematic long-range order.  相似文献   

11.
A new model is introduced to describe the ordering of solute molecules in nematic liquid crystals where the average electric field gradient experienced by the solute is zero. For such cases the average orientation of the solute correlates with its size and shape. We assume a mean-field potential that depends on the length of the projection of the solute onto the axis parallel to the director and the circumference of the projection onto the plane perpendicular to the director. The model is used to fit the experimental values of the order parameters of a variety of rigid molecules having different symmetries. Very good fits for the order parameters of 1CB and the quadrupolar coupling of 5CB were obtained using the same set of parameters used to fit the rigid solutes. This shows that the contribution to orientational order from size and shape effects can be calculated from a potential with solute-independent parameters.  相似文献   

12.
The influence of capillary flow on the alignment of the nematic liquid crystal 5CB on fatty acid Langmuir-Blodgett monolayers was studied by optical second-harmonic generation (SHG). The surface dipole sensitivity of the technique allows probing the orientation of the first liquid crystal monolayer in the presence of the liquid crystal bulk. It was found that capillary flow causes the first monolayer of liquid crystal molecules in contact with the fatty acid monolayer to be oriented in the flow direction with a large pretilt (78 degrees), resulting in a quasi-planar alignment with splay-bend deformation of the nematic director in the bulk. The large pretilt angle also suggests that the Langmuir-Blodgett film itself is affected by the flow. The quasi-planar flow-induced alignment was found to be metastable. Once the flow ceases, circular domains of homeotropic orientation nucleate in the sample and expand until the whole sample becomes homeotropic. This relaxation process from flow-induced quasi-planar to surface-induced homeotropic alignment was also monitored by SHG. It was found that in the homeotropic state the first nematic layer presents a pretilt of 38 degrees almost isotropically distributed in the plane of the cell, with a slight preference for the direction of the previous flow. Received 8 November 2000 and Received in final form 12 March 2001  相似文献   

13.
Surface-charge-governed ion transport in nanofluidic channels   总被引:1,自引:0,他引:1  
A study of ion transport in aqueous-filled silica channels as thin as 70 nm reveals a remarkable degree of conduction at low salt concentrations that departs strongly from bulk behavior: In the dilute limit, the electrical conductances of channels saturate at a value that is independent of both the salt concentration and the channel height. Our data are well described by an electrokinetic model parametrized only by the surface-charge density. Using chemical surface modifications, we further demonstrate that at low salt concentrations, ion transport in nanochannels is governed by the surface charge.  相似文献   

14.
Photopyroelectric measurements of the anisotropy in the thermal conductivity Deltak vs temperature in the nCB (n=5,ellipsis,9) series are reported. The data have been used to deduce the behavior of the orientational order parameter Q close to the nematic-isotropic (N-I) and smectic A-nematic (A-N) phase transitions, respectively. It has been shown that near the N-I transition the data for 5CB and 6CB are consistent with the so-called "tricritical hypothesis," which predicts beta=0.25. This is not true for 7CB and 8CB in which the order parameter exhibits a behavior that could be caused by the presence of fluctuations that become increasingly important when the transition temperature is approached. A very simple model, which takes into account the contribution of fluctuations to the orientational order, has been developed close to the A-N transition and it has been shown that it is in good agreement with the experimental results. A semiquantitative explanation for the observed behavior in compounds with different nematic range has been also given.  相似文献   

15.
The complex specific heat is measured over a wide temperature range for the liquid crystal (LC) 4-cyano-4-octylbiphenyl (8CB) and cadmium sulfate quantum dots (QDs) composites as a function of QD concentration. The thermal scans were performed under near-equilibrium conditions for all samples having QDs weight percent (φw) from 0 to 3wt% over a wide range of temperature well above and below the two transitions in pure 8CB. Isotropic (I) to nematic (N) and nematic to smectic-A (SmA) phase transitions evolve in character and their transition temperatures offset by (~2.3 to 2.6 K) lower for all composite samples as compared to that in pure 8CB. The enthalpy change associated with IN phase transitions shows slightly different behavior on heating and cooling and it also shows crossover behavior at lower and higher QD content. The enthalpy change associated with N–SmA phase transitions is independent of QD loading and thermal treatment. Given the homogeneous and random distribution of QD in these nanocomposites, we interpret that these results as arising that the nematic phase imposes self-assembly on QDs to form one-dimensional arrays leading to QDs and induces net local disordering effect in LC media.  相似文献   

16.
Laser tweezers have been used to drive the oscillations of a chain of entangled colloidal particles in the nematic liquid crystal 5CB. The amplitude and phase of light-driven oscillations have been determined for the motion of individual colloidal particles. The collective motion of 4.8μm silica particles is highly damped for a driving frequency above 0.5Hz. The results were compared to an effective bead-spring model, where the motion of elastically coupled particles is hindered by viscous damping and hydrodynamic coupling. Qualitative agreement between theory and experiment was obtained.  相似文献   

17.
The present paper reports sign inversion in dielectric anisotropy of a nematic liquid crystal, i.e. 5CB, as an effect of doping dye (solvent green 3) in small amount. It is the result of strong variation of the parallel component of dielectric permittivity with temperature for a dye doped sample. This behavior is attributed to the interaction taking place between the nematic liquid crystal molecule and the dye molecule. This behavior of dielectric anisotropy has been explained on the basis of interaction between the dye (guest) and the liquid crystal molecules (host).  相似文献   

18.
We have analyzed molecular ordering in a nematic sample sandwiched between two parallel substrates, characterized by a periodically varying anchoring easy axis. If the periodicity lambda is smaller than the Debye screening length l(D) and the nematic material possesses flexoelectric properties, it is necessary to take into account also the electrostatic and flexoelectric contributions in the thermodynamical potential when the actual director field is determined. In this framework, for small deviations from the homeotropic alignment we have derived analytical expressions for the tilt angle (theta) and the electrical potential. To establish a connection with experimentally observable quantities, we have related the theta profile to the average and investigated its behavior for different values of lambda, the flexoelectric coefficient, and the anchoring strength w. Our results indicate that in a nematic with pronounced flexoelectric properties for small enough lambda, a kind of subsurface deformation appears, which substantially decreases . Therefore, effects of flexoelectricity cannot be neglected in treating nematic cells with modulated anchoring which allows bistable ordering.  相似文献   

19.
We report studies of the frequency-dependent shear modulus, G(*)(omega) = G(')(omega) + iG(')(omega), of the liquid crystal octylcyanobiphenyl (8CB) confined in a colloidal aerosil gel. With the onset of smectic order, G' grows approximately linearly with decreasing temperature, reaching values that exceed by more than 3 orders of magnitude the values for pure 8CB. The modulus at low temperatures possesses a power-law component, G(*)(omega) approximately omega(alpha), with exponent alpha that approaches zero with increasing gel density. The amplitude of G' and its variation with temperature and gel density indicate that the low temperature response is dominated by a dense population of defects in the smectic. In contrast, when the 8CB is isotropic or nematic, the modulus is controlled by the elastic behavior of the colloidal gel.  相似文献   

20.
A statistical theory is proposed to describe a suspension of carbon nanotubes in a nematic liquid crystal. The mean-field approach is used, and dispersion attraction, the excluded volume effects, the diamagnetism of liquid crystal molecules, and the strong diamagnetism of nanotubes are taken into account. The influence of the volume fraction of impurity, temperature, and magnetic field on the orientational ordering of a liquid crystal matrix and carbon nanotubes is studied. The concentration and temperature phase transitions in the suspension are investigated for various magnetic fields. The concentration and field shifts of the point of the phase transition between nematic and isotropic or paranematic phases are studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号