首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 823 毫秒
1.
11B spin-lattice relaxation measurements have been carried out in SmB6 samples with large low-temperature resistivities. Above 15 K the relaxation is activated, with approximately the same gap (≈6 meV) as found previously in transport and optical measurements. 4f spin fluctuations apparently dominate the relaxation, so that these results give strong evidence for 4f-conduction band hybridization at the gap edge. An anomalous peak in the relaxation rate was observed at ≈5 K, which is tentatively attributed to fluctuations of “remagnetized” Sm3+ ions near Sm-site vacancies.  相似文献   

2.
The prospect of building spintronic devices in which electron spins store and transport information has attracted strong attention in recent years. Here we present some of our representative theoretical results on three fundamental aspects of spintronics: spin coherence, spin entanglement, and spin transport. In particular, we discuss our detailed quantitative theory for spin relaxation and coherence in electronic materials, resolving in the process a long-standing puzzle of why spin relaxation is extremely fast in Al (compared with other simple metals). In the study of spin entanglement, we consider two electrons in a coupled GaAs double-quantum-dot structure and explore the Hilbert space of the double dot. The specific goal is to critically assess the quantitative aspects of the proposed spin-based quantum dot quantum computer architecture. Finally, we discuss our theory of spin-polarized transport across a semiconductor/metal interface. In particular, we study Andreev reflection, which enables us to quantify the degree of carrier spin polarization and the strength of interfacial scattering.  相似文献   

3.
A powder X-ray diffraction study, combined with magnetic susceptibility and electric transport measurements, was performed on a series of LnCoO3 perovskites (Ln = Y, Dy, Gd, Sm, Nd, Pr and La) over a temperature range 100–1000 K. A non-standard temperature dependence of the observed thermal expansion was modelled as a sum of three contributions: (1) weighted sum of lattice expansions of the cobaltite in the diamagnetic low spin state and in the intermediate (IS) or high (HS) spin state. (2) An anomalous expansion due to the increasing population of excited (IS or HS) states of Co3+ ions over the course of the diamagnetic-paramagnetic transition. (3) An anomalous expansion due to excitations of Co3+ ions to another paramagnetic state accompanied by an insulator-metal transition. The anomalous expansion is governed by parameters that are found to vary linearly with the Ln ionic radius. In the case of the first magnetic transition it is the energy splitting E between the ground low spin state and the excited state, presumably the intermediate spin state. The energy splitting E, determined by a fit to magnetic susceptibility, decreases with temperature. The values of E determined for LaCoO3 and YCoO3 at T=0 K are 164 K and 2875 K respectively, which fall to zero at T=230 K for LaCoO3 and 860 K for YCoO3. The second anomalous expansion connected with a simultaneous magnetic and insulator-metal transition is characterized by its center at T=535 K for LaCoO3 and 800 K for YCoO3. The change of the unit cell volume during each transition is independent of the Ln cation and is about 1% in both cases.  相似文献   

4.
We show that the electric-field-induced thermal asymmetry between the electron and lattice systems in pure silicon substantially impacts the identity of the dominant spin relaxation mechanism. Comparison of empirical results from long-distance spin transport devices with detailed Monte?Carlo simulations confirms a strong spin depolarization beyond what is expected from the standard Elliott-Yafet theory even at low temperatures. The enhanced spin-flip mechanism is attributed to phonon emission processes during which electrons are scattered between conduction band valleys that reside on different crystal axes. This leads to anomalous behavior, where (beyond a critical field) reduction of the transit time between spin-injector and spin-detector is accompanied by a counterintuitive reduction in spin polarization and an apparent negative spin lifetime.  相似文献   

5.
Electron spin echo envelope modulation (ESEEM) in a three-pulse stimulated echo experiment, when the time interval between the first and second pulses τ is varied, is attributed to a spontaneous change of the electron spin Larmor frequency in the time intervalT between the second and third pulses, due to the longitudinal relaxation of nearby nuclei. It is observed for nitroxide radicals in glassy matrices in the temperature range of 130–240 K. Nuclear relaxation is assumed to arise from fluctuation of the proton hyperfine interaction, due to fast rotation of the methyl groups. This contribution to ESEEM and the conventional one that is induced by the simultaneous excitation of allowed and forbidden electron spin transitions were found to be multiplicative. As the latter does not depend on the timeT, both contributions can be easily separated. The rate of nuclear spin relaxation was determined, and correlation time of methyl group rotation was estimated by Redfield theory of spin relaxation. Arrhenius parameters of this motion were estimated on the basis of these data and those at 77 and 90 K, where the previously developed approach was used (L.V. Kulik, I.A. Grigor’ev, E.S. Salnikov, S.A. Dzuba, Yu.D. Tsvetkov, J. Phys. Chem. A 106, 12066–12071, 2003).  相似文献   

6.
Low-temperature (4-55 K) pulsed EPR measurements were performed with the magnetic field directed along the z-axis of the g-factor of the low-symmetry octahedral complex [(63)Cu(L-aspartate)(2)(H2O)2] undergoing dynamic Jahn-Teller effect in diaqua(L-aspartate)Zn(II) hydrate single crystals. Spin-lattice relaxation time T(1) and phase memory time T(M) were determined by the electron spin echo (ESE) method. The relaxation rate 1/T(1) increases strongly over 5 decades in the temperature range 4-55 K. Various processes and mechanisms of T(1)-relaxation are discussed, and it is shown that the relaxation is governed mainly by Raman relaxation processes with the Debye temperature Theta(D)=204 K, with a detectable contribution from disorder in the doped Cu(2+) ions system below 12 K. An analytical approximation of the transport integral I(8) is given in temperature range T=0.025-10Theta(D) and applied for computer fitting procedures. Since the Jahn-Teller distorted configurations differ strongly in energy (delta(12)=240 cm(-1)), there is no influence of the classical vibronic dynamics mechanism on T(1). Dephasing of the ESE (phase relaxation) is governed by instantaneous diffusion and spectral diffusion below 20 K with resulting rigid lattice value 1/T(0)(M)=1.88 MHz. Above this temperature the relaxation rate 1/T(M) increases upon heating due to two mechanisms. The first is the phonon-controlled excitation to the first excited vibronic level of energy Delta=243 cm(-1), with subsequent tunneling to the neighbor potential well. This vibronic-type dynamics also produces a temperature-dependent broadening of lines in the ESEEM spectra. The second mechanism is produced by the spin-lattice relaxation. The increase in T(M) is described in terms of the spin packets forming inhomogeneously broadened EPR lines.  相似文献   

7.
Extremely long electron spin memory times in GaAs are reported. It was established by the optical orientation method that the spin relaxation time of electrons localized at shallow donors in n-type gallium arsenide (N d ?N A ≈1014 cm?3) is 290±30 ns at a temperature of 4.2 K. The exchange interaction of quasi-free electrons and electrons at donors suppresses the main spin-loss channel for electrons localized at donors—spin relaxation due to the hyperfine interaction with lattice nuclei.  相似文献   

8.
Hong Ma  Jiancai Leng 《Physics letters. A》2013,377(31-33):1974-1978
The transient spin polarization dynamics in bulk cadmium telluride (CdTe) at 70 K is investigated by the circularly polarized pump-probe reflection technique. A general expression is derived from the rate equations of a two-level system with small signal approximation to describe the light-helicity-dependent reflection spectrum. The initial degree of electron spin polarization in the excited state and the electron spin relaxation time in bulk CdTe at low temperature with different carrier density are analyzed according to this model. Our experimental results reveal that the D?yakonov–Perel? mechanism based on a fully microscopic kinetic spin Bloch equation (microscopic KSBE) approach dominates in the electron spin relaxation process in bulk CdTe crystal.  相似文献   

9.
We report a surprisingly long spin relaxation time of electrons in Mn-doped p-GaAs. The spin relaxation time scales with the optical pumping and increases from 12 ns in the dark to 160 ns upon saturation. This behavior is associated with the difference in spin relaxation rates of electrons precessing in the fluctuating fields of ionized or neutral Mn acceptors, respectively. For the latter, the antiferromagnetic exchange interaction between a Mn ion and a bound hole results in a partial compensation of these fluctuating fields, leading to the enhanced spin memory.  相似文献   

10.
A theory is developed for the formation of a nuclear spin polaron under optical cooling of nuclear spins in the vicinity of donor centers. It is shown that the polaron does not form above a certain limiting nuclear-spin temperature. For a shallow donor in GaAs, this temperature is about 10−7 K. The formation of a nuclear spin polaron should manifest itself in an anomalous increase of the spin relaxation time of the total spin of its component nuclei. Fiz. Tverd. Tela (St. Petersburg) 40, 1018–1021 (June 1998)  相似文献   

11.
研究了不同芯数(单芯、6芯和12芯)的C掺杂MgB2超导线材的失超特性.在制冷机环境(20K)下测量了C掺杂MgB2超导线材样品在自场下的最小触发能及失超传播速度.实验结果表明,失超传播速度随着工作电流的增大而线性增加.失超传播速度的大小跟测量位置有关,离触发区越近的传播速度越大.单芯样品的最小触发能最小,6芯和12芯线的最小触发能相差不大.最小触发能随工作电流的增加成指数形式衰减.  相似文献   

12.
The time-resolved electron paramagnetic resonance (EPR) spectra are studied in the temperature range of 110–300 K for two mixed solutions of porphyrins, ZnTPP and H2TPP, in toluene and the stable free radical 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO). The EPR spectra and their kinetic behavior were studied for concentrations of TEMPO varied in the interval from 0.51 to 7.68 mM, while the porphyrin concentration was fixed as 1 mM. The EPR spectra of triplet-state porphyrins and free radicals manifest the chemically induced spin polarization. For the relatively short-lived radical-triplet pairs, with the perturbation theory up to the fourth order, the theoretical expressions are obtained for the triplet and radical spin polarization induced by the enhanced intersystem crossing (ISC) due to the interaction of excited singlet-state porphyrins with free radicals and by the triplet quenching by free radicals. The time-dependent EPR spectra of the triplets are simulated taking into account the spin-lattice relaxation. It is shown that the variation of the triplet EPR spectra shape, when the time of observation increases, arises from the spin-lattice relaxation kinetics. The kinetic behavior of the TEMPO EPR spectrum was simulated on the basis of the kinetic scheme suggested earlier in the literature. The triplet spin-lattice relaxation time, the rate of the ISC and the lifetime of the excited singlet state were estimated by fitting the kinetic curves for the triplet EPR spectra intensity. For the mixed porphyrin-TEMPO solutions, a possible set of the rate constants of important bimolecular processes were determined. For this set of parameters, it turns out that the spin polarization transfer has a smaller rate constant than the rate constant of the diffusion collisions of the triplet and radical. It appears that the rate constant of the ISC catalyzed by radicals is relatively high in the solutions close to the melting point of the solvent and in the soft-glassy state. In the triplet porphyrins the initial spin polarization induced by the spin-selective ISC was found to exceed the equilibrium spin polarization by up to two orders of magnitude.  相似文献   

13.
《Physics letters. A》2019,383(24):2903-2907
In degenerate quantum plasma the energy behavior of electrostatic modes propagating perpendicular to the external magnetic field is studied by employing the separated spin evolution quantum hydrodynamic (SSE-QHD) model. This model reveals that spin electron cyclotron wave (SECW) appears additionally with the upper hybrid wave (UHW). In case of SECW, the curves for the energy flow speed at different levels of spin polarization effect flip over at a particular value of wave number. The spin polarization effect enhances the energy flow speed before this value of wave number and then suppresses it afterward. The energy flow speed is enhanced by spin polarization effect in the entire range of wave number for the propagation of UHW. The Bohm potential effect drastically increases the energy flow speed at high wave number domain in both the waves. This study may find its applications to understand the energy behavior inspin polarized solid state plasmas  相似文献   

14.
Transient spin gratings are used to study spin diffusion in lightly n-doped GaAs quantum wells at low temperatures. The spin grating is shown to form in the excess electrons from doping, providing spin relaxation and transport properties of the carriers most relevant to spintronic applications. We demonstrate that spin diffusion of the these carriers is accelerated by increasing the density or energy of the optically excited carriers. These results can be used to better understand and even control spin transport in experiments that optically excite spin-polarized carriers.  相似文献   

15.
Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a membrane-bound electron transfer protein that links primary flavoprotein dehydrogenases with the main respiratory chain. Human, porcine, and Rhodobacter sphaeroides ETF-QO each contain a single [4Fe-4S](2+,1+) cluster and one equivalent of FAD, which are diamagnetic in the isolated enzyme and become paramagnetic on reduction with the enzymatic electron donor or with dithionite. The anionic flavin semiquinone can be reduced further to diamagnetic hydroquinone. The redox potentials for the three redox couples are so similar that it is not possible to poise the proteins in a state where both the [4Fe-4S](+) cluster and the flavoquinone are fully in the paramagnetic form. Inversion recovery was used to measure the electron spin-lattice relaxation rates for the [4Fe-4S](+) between 8 and 18K and for semiquinone between 25 and 65K. At higher temperatures the spin-lattice relaxation rates for the [4Fe-4S](+) were calculated from the temperature-dependent contributions to the continuous wave linewidths. Although mixtures of the redox states are present, it was possible to analyze the enhancement of the electron spin relaxation of the FAD semiquinone signal due to dipolar interaction with the more rapidly relaxing [4Fe-4S](+) and obtain point-dipole interspin distances of 18.6+/-1A for the three proteins. The point-dipole distances are within experimental uncertainty of the value calculated based on the crystal structure of porcine ETF-QO when spin delocalization is taken into account. The results demonstrate that electron spin relaxation enhancement can be used to measure distances in redox poised proteins even when several redox states are present.  相似文献   

16.
We report on coherent manipulation of electron spins in an antiferromagnetically coupled spin triangle {Cu3-X} (X=As, Sb) impregnated in freestanding nanoporous silicon (NS) by using 240 GHz microwave pulses. Rabi oscillations are observed and the spin coherence time is found to be T(2)=1066 ns at 1.5 K. This demonstrates that the {Cu3-X}:NS hybrid material provides a promising scheme for implementing spin-based quantum gates. By measuring the spin relaxation times of samples with different symmetries and environments we give evidence that a spin chirality is the main decoherence source of spin triangle molecules.  相似文献   

17.
Electron spin resonance (ESR) and optical absorption spectra of K atoms embedded in Ar matrices have been measured simultaneously. ESR and optical spectra could be correlated comparing the effects of annealing and light induced site modifications. Electron spin relaxation times were estimated by saturation measurements. A large variety of ESR spectra was found which could be arranged into four groups according to their A and g factor matrix shifts. Two of these groups could be correlated with optical absorptions namely with the so-called red and blue triplet bands. The other two groups belong to K-(H2O)n complexes. Part of the absorption disappeared irreversibly upon annealing at about 12 K. There is considerable experimental evidence that this annealing process indicates the transition from an amorphous to a microcrystalline structure at about 12 K.  相似文献   

18.
We present a model of spin transport in a Co/Cu(1 1 1)/Co pseudo-spin-valve (PSV) structure where current is flowing in the current perpendicular-to-plane (CPP) geometry. The model considers ballistic spin-dependent transmission at the two Co–Cu interfaces, as well as diffusive spin relaxation within the Cu spacer and free Co layer. In the latter, the spin relaxation process is composed of the usual longitudinal spin relaxation due to spin flip scattering, as well as transverse spin relaxation due to spin precession. The resulting spin transfer torque exerted on the moments within the free Co layer is composed of two contributions, the main contribution coming from “absorbed” spins in the interfacial regions. The second contribution arises from the relaxation of spin accumulation within the free Co layer. The calculated critical current density for switching is estimated to be approximately between 3.3×107 and 1.1×108 A/cm2, which is in agreement with available experimental results.  相似文献   

19.
We report observation of intrinsic inverse spin Hall effect in undoped GaAs multiple quantum wells with a sample temperature of 10 K. A transient ballistic pure spin current is injected by a pair of laser pulses through quantum interference. By time resolving the dynamics of the pure spin current, the momentum relaxation time is deduced, which sets the lower limit of the scattering time between electrons and holes. The transverse charge current generated by the pure spin current via the inverse spin Hall effect is simultaneously resolved. We find that the charge current is generated well before the first electron-hole scattering event. Generation of the transverse current in the scattering-free ballistic transport regime provides unambiguous evidence for the intrinsic inverse spin Hall effect.  相似文献   

20.
The interaction of the electron spin with local elastic twists due to transverse phonons is studied. The universal dependence of the spin-relaxation rate on the strength and direction of the magnetic field is obtained in terms of the electron gyromagnetic tensor and macroscopic elastic constants of the solid. The theory contains no unknown parameters and it can be easily tested in experiment. At high magnetic field it provides a parameter-free lower bound on the electron spin relaxation in quantum dots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号