首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A continual model of nonuniform magnetism in thin films and wires made of a diluted magnetic semiconductor is considered with regard to the finite spin polarization and band splitting of carriers responsible for the indirect Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between magnetic impurities. Spatial distributions (across the film thickness or along the wire radius) of magnetization and the concentrations of carriers with different spin orientations for different temperatures, as well as the temperature dependence of the average magnetization, are obtained as a solution to a nonlinear integral equation.  相似文献   

2.
We demonstrate that the magnetic properties of diluted magnetic semiconductors are dominated by short ranged interatomic exchange interactions that have a strong directional dependence. By combining first principles calculations of interatomic exchange interactions with a classical Heisenberg model and Monte Carlo simulations, we reproduce the observed critical temperatures of a broad range of diluted magnetic semiconductors. We also show that agreement between theory and experiment is obtained only when the magnetic atoms are randomly positioned. This suggests that the ordering of diluted magnetic semiconductors is heavily influenced by magnetic percolation, and that the measured critical temperatures should be very sensitive to details in the sample preparation, in agreement with observations.  相似文献   

3.
A review will be given of the magnetic characteristics of diluted magnetic semiconductors and the relation with the driving exchange mechanisms. II–VI as well as IV–VI compounds will be considered. The relevance of the long-range interaction and the role of the carrier concentration will be emphasized.  相似文献   

4.
A series of Mn-doped ZnO films have been prepared in different sputtering plasmas by using the inductively coupled plasma enhanced physical vapour deposition. The films show paramagnetic behaviour when they are deposited in an argon plasma. The Hall measurement indicates that ferromagnetism cannot be realized by increasing the electron concentration. However, the room-temperature ferromagnetism is obtained when the films are deposited in a mixed argon-nitrogen plasma. The first-principles calculations reveal that antiferromagnetic ordering is favoured in the case of the substitution of Mn^2+ for Zn^2+ without additional acceptor doping. The substitution of N for O (NO^-) is necessary to induce ferromagnetic couplings in the Zn-Mn-O system. The hybridization between N 2p and Mn 3d provides an empty orbit around the Fermi level. The hopping of Mn 3d electrons through the empty orbit can induce the ferromagnetic coupling. The ferromagnetism in the N-doped Zn-Mn-O system possibly originates from the charge transfer between Mn^2+ and Mn^3+ via NO^-, The key factor is the empty orbit provided by substituting N for O, rather than the conductivity type or the carrier concentration.  相似文献   

5.
6.
7.
8.
9.
10.
Starting from a many–body Hamiltonian for a system of photogenerated electrons and holes, spin-split by magnetic ions in diluted magnetic semiconductors, we derive, presumably for the first time, an expression for the photomagnetization as a function of the photon power, frequency, excitonic interaction and the magnetic ion concentration. Damping of nonequilibrium carriers and spin excitons is considered phenomenologically. Our results agree qualitatively with some of the systematics of the photomagnetization observed in Hg 1?x Mn x Te.  相似文献   

11.
Magnetic properties of p-doped GaMnN diluted magnetic semiconductors, having both randomly distributed Mn ions and MnxNy clusters, are presented under the theory based on the hole-mediated ferromagnetism. The critical temperature of the second order phase transition between ferromagnetic and paramagnetic phases and the magnetization as a function of temperature are obtained from the free energy calculation. The Curie temperature of the p-doped GaMnN containing clusters depends not on the type of clusters but on the composition rate of clusters. The behavior of the spontaneous magnetization as a function of temperature is strongly affected by carrier concentration. The p-doped GaMnN diluted magnetic semiconductors containing clusters have room temperature ferromagnetism regardless of the magnetic type of clusters, as long as hole-mediated spin-spin interactions occur in them.  相似文献   

12.
The magnetic correlation between magnetic impurities in semiconductors is investigated by performing the quantum Monte Carlo (QMC) simulation. The Anderson Hamiltonian with the realistic parameters obtained by the local density approximation (LDA) calculation is employed. The LDA calculation gives a dispersion of the host (GaAs) electron and the mixing energy between host and magnetic impurity (Mn). The mixing between host and impurity electrons generates the impurity bound state in the energy gap of semiconductors. The long range ferromagnetic coupling is observed when the Fermi energy locates between the band edge and the impurity bound state. The ferromagnetic coupling is enhanced by decreasing temperature.  相似文献   

13.
14.
We theoretically study the development of spontaneous magnetization in diluted magnetic semiconductors as arising from a percolation of bound magnetic polarons. Within the framework of a generalized percolation theory we derive analytic expressions for the Curie temperature and the magnetization in the limit of low carrier density, obtaining excellent quantitative agreement with Monte Carlo simulation results and good qualitative agreement with experimental results.  相似文献   

15.
16.
One of the remarkable properties of the II–VI diluted magnetic semiconductor (DMS) quantum dot (QD) is the giant Zeeman splitting of the carrier states under application of a magnetic field. This splitting reveals strong exchange interaction between the magnetic ion moment and electronic spins in the QD. A theoretical study of the electron spectrum and of its relaxation to the ground state via the emission of a longitudinal optical (LO) phonon, in a CdSe/ZnMnSe self-assembled quantum dot, is proposed in this work. Numerical calculations showed that the strength of this interaction increases as a function of the magnetic field to become more than 30 meV and allows some level crossings. We have also shown that the electron is more localized in this DMS QD and its relaxation to the ground state via the emission of one LO phonon is allowed.  相似文献   

17.
We study the effects of disorder in the vicinity of the ferromagnetic transition in a diluted magnetic semiconductor in the strongly localized regime. We derive an effective polaron Hamiltonian, which leads to the Griffiths phase above the ferromagnetic transition point. The Griffiths-McCoy effects yield nonperturbative contributions to the dynamic susceptibility. We explicitly derive the long-time susceptibility, which has a pseudoscaling form, with the dynamic critical exponent being expressed through the percolation indices.  相似文献   

18.
We formulate a complete microscopic theory of a coupled pair of bound magnetic polarons, the bound-magnetic-polaron molecule (BMPM) in a diluted magnetic semiconductor by taking into account both the proper two-body nature of the impurity-electron wavefunction and within the general spin-rotation-invariant approach to the electronic states. Also, the model takes into account both the Heisenberg and the antiferromagnetic kinetic-exchange interactions, as well as the ferromagnetic coupling within the common spin BMPM cloud. In this manner, we correct, unify and extend the weakly interacting BMP pair models of Wolff-Bhatt-Durst (2002 Phys. Rev. B 65 235205) and the model of nonoverlapping polarons considered by Angelescu and Bhatt (2002 Phys. Rev. B 65 75211). The resulting BMPM Hamiltonian is solved within the continuum-medium and the effective-mass approximations for the donor case and the thermodynamics is derived. In our approach the thermodynamic fluctuations of magnetization of the spins within BMPM are taken as Gaussian. It appears that the fluctuations can strongly stabilize the spin-triplet state, which may constitute a precursor effect of a ferromagnetic ordering in a many-impurity system.  相似文献   

19.
20.
Polycrystalline samples of Sn1−xCoxO2 are prepared for x=0.02, 0.05 and 0.10. They all exhibit room temperature ferromagnetism with decrease in saturation magnetization with increase in doping. The magnetization data recorded at 85 K, 295 K and 400 K for x ≥ 0.05 could be analyzed in terms of bound magnetic polaron model and the typical polaron concentration at room temperature is found to be in the order of 1021 per m−3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号