首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Christopher Briscoe 《Physica A》2010,389(19):3978-455
The nature of randomness in disordered packings of frictional and frictionless spheres is investigated using theory and simulations of identical spherical grains. The entropy of the packings is defined through the force and volume ensemble of jammed matter and this is shown to be difficult to calculate analytically. A mesoscopic ensemble of isostatic states is then utilized in an effort to predict the entropy through the definition of a volume function that is dependent on the coordination number. Equations of state are obtained relating entropy, volume fraction and compactivity characterizing the different states of jammed matter, and elucidating the phase diagram for jammed granular matter. Analytical calculations are compared to numerical simulations using volume fluctuation analysis and graph theoretical methods, with reasonable agreement. The entropy of the jammed system reveals that random loose packings are more disordered than random close packings, allowing for an unambiguous interpretation of both limits. Ensemble calculations show that the entropy vanishes at random close packing (RCP), while numerical simulations show that a finite entropy remains in the microscopic states at RCP. The notion of a negative compactivity, which explores states with volume fractions below those achievable by existing simulation protocols, is also explored, expanding the equations of state. The mesoscopic theory reproduces the simulations results in shape well, though a difference in magnitude implies that the entire entropy of the packing may not be captured by the methods presented herein. We discuss possible extensions to the present mesoscopic approach describing packings from random loose packing (RLP) to RCP to the ordered branch of the equation of state in an effort to understand the entropy of jammed matter in the full range of densities from RLP to face-centered cubic (FCC) packing.  相似文献   

2.
We investigate the existence of random close and random loose packing limits in two-dimensional packings of monodisperse hard disks. A statistical mechanics approach-based on several approximations to predict the probability distribution of volumes-suggests the existence of the limiting densities of the jammed packings according to their coordination number and compactivity. This result has implications for the understanding of disordered states in the disk packing problem as well as the existence of a putative glass transition in two-dimensional systems.  相似文献   

3.
Chaoming Song 《Physica A》2010,389(21):4497-455
We introduce a “Hamiltonian”-like function, called the volume function, indispensable to describe the ensemble of jammed matter such as granular materials and emulsions from a geometrical point of view. The volume function represents the available volume of each particle in the jammed systems. At the microscopic level, we show that the volume function is the Voronoi volume associated to each particle and in turn we provide an analytical formula for the Voronoi volume in terms of the contact network, valid for any dimension. We then develop a statistical theory for the probability distribution of the volumes in 3d to calculate an average volume function coarse-grained at a mesoscopic level. The salient result is the discovery of a mesoscopic volume function inversely proportional to the coordination number. Our analysis is the first step toward the calculation of macroscopic observables and equations of state using the statistical mechanics of jammed matter, when supplemented by the condition of mechanical equilibrium of jamming that properly defines jammed matter at the ensemble level.  相似文献   

4.
The problem of finding the most efficient way to pack spheres has an illustrious history, dating back to the crystalline arrays conjectured by Kepler and the random geometries explored by Bernal in the 1960s. This problem finds applications spanning from the mathematician’s pencil, the processing of granular materials, the jamming and glass transitions, all the way to fruit packing in every grocery. There are presently numerous experiments showing that the loosest way to pack spheres gives a density of ∼55% (named random loose packing, RLP) while filling all the loose voids results in a maximum density of ∼63%-64% (named random close packing, RCP). While those values seem robustly true, to this date there is no well-accepted physical explanation or theoretical prediction for them. Here we develop a common framework for understanding the random packings of monodisperse hard spheres whose limits can be interpreted as the experimentally observed RLP and RCP. The reason for these limits arises from a statistical picture of jammed states in which the RCP can be interpreted as the ground state of the ensemble of jammed matter with zero compactivity, while the RLP arises in the infinite compactivity limit. We combine an extended statistical mechanics approach ‘a la Edwards’ (where the role traditionally played by the energy and temperature in thermal systems is substituted by the volume and compactivity) with a constraint on mechanical stability imposed by the isostatic condition. We show how such approaches can bring results that can be compared to experiments and allow for an exploitation of the statistical mechanics framework. The key result is the use of a relation between the local Voronoi volumes of the constituent grains (denoted the volume function) and the number of neighbors in contact that permits us to simply combine the two approaches to develop a theory of volume fluctuations in jammed matter. Ultimately, our results lead to a phase diagram that provides a unifying view of the disordered hard sphere packing problem and further sheds light on a diverse spectrum of data, including the RLP state. Theoretical results are well reproduced by numerical simulations that confirm the essential role played by friction in determining both the RLP and RCP limits. The RLP values depend on friction, explaining why varied experimental results can be obtained.  相似文献   

5.
Zhao C  Tian K  Xu N 《Physical review letters》2011,106(12):125503
We study the properties of jammed packings of frictionless spheres over a wide range of volume fractions. There exists a crossover volume fraction which separates deeply jammed solids from marginally jammed solids. In deeply jammed solids, all the scalings presented in marginally jammed solids are replaced with remarkably different ones with potential independent exponents. Correspondingly, there are structural changes in the pair distribution function associated with the crossover. The normal modes of vibration of deeply jammed solids also exhibit some anomalies, e.g., strengthened quasilocalization and the absence of Debye-like density of states at low frequencies. Deeply jammed systems may thus be cataloged to a new class of amorphous solids.  相似文献   

6.
We report a numerical study of the close packing of monodisperse hard spheres. The close packings of hard spheres are produced by the Lubachesky-Stillinger (LS) compression algorithm and span the range from the disordered states to the ordered states. We provide quantitative evidence for the claim that the density and structural order of the arrested close packing can be determined by the compression rate, i.e., with slower rates producing denser and more ordered structures. Through deeply analyzing the structure of the resulting arrested close packings, a transition region has been identified in the plane of density and reciprocal compression rate, in between what have been historically thought of as amorphous and crystalline packings. We also find clear system size dependences in studying the structural properties of the packings from the disordered ones to the ordered ones. These detailed investigations, on the structure of the arrested close packings, may provide a link between the glassy states and the crystalline states in the hard spheres.  相似文献   

7.
We demonstrate that there is no ideal glass transition in a binary hard-disk mixture by explicitly constructing an exponential number of jammed packings with densities spanning the spectrum from the accepted amorphous glassy state to the phase-separated crystal. Thus the configurational entropy cannot be zero for an ideal amorphous glass, presumed distinct from the crystal in numerous theoretical and numerical estimates in the literature. This objection parallels our previous critique of the idea that there is a most-dense random (close) packing for hard spheres [Torquato, Phys. Rev. Lett. 84, 2064 (2000)10.1103/PhysRevLett.84.2064].  相似文献   

8.
We computationally study jammed disordered hard-sphere packings as large as a million particles. We show that the packings are saturated and hyperuniform, i.e., that local density fluctuations grow only as a logarithmically augmented surface area rather than the volume of the window. The structure factor shows an unusual nonanalytic linear dependence near the origin, S(k) approximately |k|. In addition to exponentially damped oscillations seen in liquids, this implies a weak power-law tail in the total correlation function, h(r) approximately -r(-4), and a long-ranged direct correlation function c(r).  相似文献   

9.
Despite its long history, there are many fundamental issues concerning random packings of spheres that remain elusive, including a precise definition of random close packing (RCP). We argue that the current picture of RCP cannot be made mathematically precise and support this conclusion via a molecular dynamics study of hard spheres using the Lubachevsky-Stillinger compression algorithm. We suggest that this impasse can be broken by introducing the new concept of a maximally random jammed state, which can be made precise.  相似文献   

10.
Yuliang Jin 《Physica A》2010,389(23):5362-5379
Randomly packing spheres of equal size into a container consistently results in a static configuration with a density of ∼64%. The ubiquity of random close packing (RCP) rather than the optimal crystalline array at 74% begs the question of the physical law behind this empirically deduced state. Indeed, there is no signature of any macroscopic quantity with a discontinuity associated with the observed packing limit. Here we show that RCP can be interpreted as a manifestation of a thermodynamic singularity, which defines it as the “freezing point” in a first-order phase transition between ordered and disordered packing phases. Despite the athermal nature of granular matter, we show the thermodynamic character of the transition in that it is accompanied by sharp discontinuities in volume and entropy. This occurs at a critical compactivity, which is the intensive variable that plays the role of temperature in granular matter. Our results predict the experimental conditions necessary for the formation of a jammed crystal by calculating an analogue of the “entropy of fusion”. This approach is useful since it maps out-of-equilibrium problems in complex systems onto simpler established frameworks in statistical mechanics.  相似文献   

11.
We study infinite volume limits and Gibbs states of disordered lattice systems with bounded and continuous potentials. Our main tools are a generalization of relative entropy for random reference measures and a large deviation theory for nonstationary independent processes. We find that many familiar results of invariant potentials, such as large deviation theorems, variational principles, and equivalence of ensembles, continue to hold for disordered models, with suitably modified statements.  相似文献   

12.
We analyze the large-scale structure and fluctuations of jammed packings of size-disperse spheres, produced in a granular experiment as well as numerically. While the structure factor of the packings reveals no unusual behavior for small wave vectors, the compressibility displays an anomalous linear dependence at low wave vectors and vanishes when q→0. We show that such behavior occurs because jammed packings of size-disperse spheres have no bulk fluctuations of the volume fraction and are thus hyperuniform, a property not observed experimentally before. Our results apply to arbitrary particle size distributions. For continuous distributions, we derive a perturbative expression for the compressibility that is accurate for polydispersity up to about 30%.  相似文献   

13.
Dense packings of freely jointed chains of tangent hard spheres are produced by a novel Monte Carlo method. Within statistical uncertainty, chains reach a maximally random jammed (MRJ) state at the same volume fraction as packings of single hard spheres. A structural analysis shows that as the MRJ state is approached (i) the radial distribution function for chains remains distinct from but approaches that of single hard sphere packings quite closely, (ii) chains undergo progressive collapse, and (iii) a small but increasing fraction of sites possess highly ordered first coordination shells.  相似文献   

14.
15.
Dense packings of chains of hard spheres possess characteristic features that do not have a counterpart in corresponding packings of monomeric spheres especially near the maximally random jammed (MRJ) state. From the modelling perspective the additional requirement that spheres keep their connectivity while maximizing the occupied volume fraction imposes severe constraints on generation algorithms of dense chain configurations. The extremely sluggish dynamics imposed by the uncrossability of chains precludes the use of deterministic or stochastic dynamics to generate all but dilute polymer packings. As a viable alternative, especially tailored chain-connectivity-altering Monte Carlo (MC) algorithms have been developed that bypass this kinetic hindrance and have actually been able to produce packings of hard-sphere chains in a volume fraction range spanning from infinite dilution up to the MRJ state. Such very dense athermal polymer packings share a number of structural features with packings of monomeric hard spheres, but also display unique characteristics due to the constraints imposed by connectivity. We give an overview of the most relevant results of our recent modeling work on packings of freely-jointed chains of tangent hard spheres about the MRJ state, local structure, chain dimensions and their scaling with density, topological constraints in the form of entanglements and knots, contact network at jamming, and entropically driven crystallization.  相似文献   

16.
Dense particle packings acquire rigidity through a nonequilibrium jamming transition commonly observed in materials from emulsions to sandpiles. We describe athermal packings and their observed geometric phase transitions by using equilibrium statistical mechanics and develop a fully microscopic, mean-field theory of the jamming transition for soft repulsive spherical particles. We derive analytically some of the scaling laws and exponents characterizing the transition and obtain new predictions for microscopic correlation functions of jammed states that are amenable to experimental verifications and whose accuracy we confirm by using computer simulations.  相似文献   

17.
A colloidal dispersion droplet evaporating from a surface, such as a drying coffee drop, leaves a distinct ring-shaped stain. Although this mechanism is frequently used for particle self-assembly, the conditions for crystallization have remained unclear. Our experiments with monodisperse colloidal particles reveal a structural transition in the stain, from ordered crystals to disordered packings. We show that this sharp transition originates from a temporal singularity of the flow velocity inside the evaporating droplet at the end of its life. When the deposition speed is low, particles have time to arrange by Brownian motion, while at the end, high-speed particles are jammed into a disordered phase.  相似文献   

18.
We link the thermodynamics of colloidal suspensions to the statistics of regular and random packings. Random close packing has defied a rigorous definition yet, in three dimensions, there is near universal agreement on the volume fraction at which it occurs. We conjecture that the common value of phi{rcp} approximately 0.64 arises from a divergence in the rate at which accessible states disappear. We relate this rate to the equation of state for a hard-sphere fluid on a metastable, noncrystalline branch.  相似文献   

19.
Nonlinear sound is an extreme phenomenon typically observed in solids after violent explosions. But granular media are different. Right when they jam, these fragile and disordered solids exhibit a vanishing rigidity and sound speed, so that even tiny mechanical perturbations form supersonic shocks. Here, we perform simulations in which two-dimensional jammed granular packings are dynamically compressed and demonstrate that the elementary excitations are strongly nonlinear shocks, rather than ordinary phonons. We capture the full dependence of the shock speed on pressure and impact intensity by a surprisingly simple analytical model.  相似文献   

20.
We construct a statistical framework for static assemblies of deformable grains which parallels that of equilibrium statistical mechanics but with a conservation principle based on the mechanical stress tensor. We define a state function that has all the attributes of entropy. In particular, maximizing this function leads to a well-defined granular temperature and the equivalent of the Boltzman distribution for ensembles of grain packings. Predictions of the ensemble are verified against simulated packings of frictionless, deformable disks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号