首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We consider Lorentz-type mechanism for growth of LF small-scale turbulence due to generation of local field-aligned electric fields (FAEF) in the ionospheric F-region modified by powerful radio waves. The FAEF are induced by Lorentz-type forces caused by the large-scale pressure structure of the heated volume. We found that small- scale structuring of the large-scale depleted region (the patch) is a function of altitude and that the cross-field scale of small-scale irregularities is definitely determined by the gradient scale length in plasma density. This mechanism allows us to explain the generation of irregularities with scale lengths of 6 m or longer and observations of aftereffects within 30 seconds or longer after the pump switch-off if they are defined by the lifetime of the induced local sources. The predictions of the Lorentz-type mechanism are shown to be consistent with the measurements of the significant growth of DSEE typical times, related to relaxation of heater-induced small-scale irregularities, under conditions of strong natural turbulence observed as F-spread in the ionograms.Published from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 39, No. 3, pp. 318–328, March, 1996.  相似文献   

2.
A new equation for the small-scale polarization Fourier components of the incompressible fluid velocity in the case of anisotropic turbulence is suggested. The principal invariant of the strain rate tensor for the large-scale velocity is found. This invariant is of most significance for the subgrid simulation of fully developed turbulence.  相似文献   

3.
4.
The effects of the inner-and outer-scale of turbulent atmosphere on the scintillation index for an infrared laser beam propagating through atmospheric turbulence are discussed under the assumption that small-scale irradiance fluctuation is modulated by large-scale irradiance fluctuation on Earth-space paths. A model about the scintillation index with the inner-and outer-scale is developed. A numerical analysis is done by using this model. It is shown that the effect of the inner scale on scintillation index is larger than the outer scale effect for the lesser wavelength wave at visible and infrared band. From moderate to saturation regime, the inner scale effect becomes gradually small; however, the outer scale effect becomes gradually obvious. Under moderate to strong regime, therefore, the effects of the inner-and outer-scale on scintillation index must be considered for theoretical prediction scintillation of an infrared laser beam propagating through turbulent atmosphere on Earth-space paths.  相似文献   

5.
We have found a new type of large-scale instability in a rotating stratified moist atmosphere with small-scale turbulence. The turbulence is excited by an external small-scale force with a low Reynolds number. We have constructed the theory based on the method of multiscale asymptotic expansions. The nonlinear equations for large-scale motion have been derived in the third order of the perturbation theory. We have investigated the linear instability and stationary nonlinear regimes. Solutions in the form of localized vortex structures or kinks of a new type have been obtained.  相似文献   

6.
光束在强湍流区中传播的到达角起伏   总被引:4,自引:2,他引:4       下载免费PDF全文
 基于修正Rytov理论,导出了适用于强湍流区的无限平面波和球面波的到达角起伏方差表达式及其功率谱表达式,分析了散射盘对到达角起伏的影响。研究结果表明:导出的方差表达式在弱湍流区也适用,随着Rytov方差的增加到达角起伏趋于饱和;高频功率谱的下降速度随着散射盘尺度的增加而增加。  相似文献   

7.
The general nonlinear equation of the third order in field strength for the lower-hybrid drift waves in inhomogeneous plasma is obtained on the basis of kinetic theory. This equation enables us to describe strong turbulence effects (modulational instability, soliton-like solutions, etc.) as well as weak turbulence effects (decays, scattering). The investigation of the modulational instability of the lower-hybrid drift waves is carried out. It is demonstrated that the development of the lower-hybrid drift wave modulational instability is possible only when the wavevector of the modulational perturbations is less or of the order of the wavevector of the pump wave. The condition on the wave vectors, when the nonlinear response defining the character of the modulational instability is determined by the inhomogeneity effects, is obtained.  相似文献   

8.
Rogue waves, in the form of giant breathers, are shown to develop in the Alfvén wave (AW) turbulence regime described by the randomly driven derivative nonlinear Schrödinger equation in the presence of a weak dissipation. The distribution of the instantaneous global maxima of the AW intensity fluctuations is seen to be accurately fitted by power laws, which contrasts with the integrable regime (absence of dissipation and forcing) where the behavior is rather exponential. As the dissipation is reduced, freak waves form less frequently but reach larger amplitudes.  相似文献   

9.
Cang J  Liu X 《Optics letters》2011,36(17):3335-3337
The performance of partially coherent free-space optical links is investigated in the moderate to strong fluctuation regime of non-Kolmogorov turbulence. The expressions for large- and small-scale log-irradiance flux variance are obtained in non-Kolmogorov turbulence. By employing the gamma-gamma distribution of irradiance fluctuations, the effects of spatial coherence of the source, index of non-Kolmogorov spectrum, and size of the receiver on channel capacity for horizontal links are discussed. Results show that channel capacity presents fluctuating behaviors with the variation of alpha for longer links and increases for alpha values higher than 11/3.  相似文献   

10.
11.
米建春  冯宝平 《物理学报》2010,59(7):4748-4755
对出口雷诺数约为13000的湍流平面射流瞬时速度(u)测量信号(um)进行高频过滤研究. 在分析了高频噪声对u测量精度的影响后,使用Mi等人 (2005, Phys. Rev. E 71, 066304)提出的快速收敛迭代法对um进行了数值过滤,并考察过滤前后统计湍流量的变化. 结果发现,噪声的存在不仅对湍流小尺度统计量的估算影响显著,也对与大尺度关联的量产生一定的影响. 在有效去除噪声造  相似文献   

12.
We investigate the role played by hydrodynamic instability in the wrinkled flamelet regime of turbulent combustion, where the intensity of turbulence is small compared to the laminar flame speed and the scale large compared to the flame thickness. To this end the Michelson–Sivashinsky (MS) equation for flame front propagation in one and two spatial dimensions is studied in the presence of uncorrelated and correlated noise representing a turbulent flow field. The combined effect of turbulence intensity, integral scale, and an instability parameter related to the Markstein length are examined and turbulent propagation speed monitored for both stable planar flames and corrugated flames for which the planar conformation is unstable. For planar flames a particularly simple scaling law emerges, involving quadratic dependence on intensity and a linear dependence on the degree of instability. For corrugated flames we find the dependence on intensity to be substantially weaker than quadratic, revealing that corrugated flames are more resilient to turbulence than planar flames. The existence of a threshold turbulence intensity is also observed, below which the corrugated flame in the presence of turbulence behaves like a laminar flame. We also analyze the conformation of the flame surface in the presence of turbulence, revealing primary, large-scale wrinkles of a size comparable to the main corrugation. When the integral scale is much smaller than the characteristic corrugation length we observe, in addition to primary wrinkles, secondary small-scale wrinkles contaminating the surface. The flame then acquires a multi-scale, self-similar conformation, with a fractal dimension, for one-dimensional flames, plateauing at 1.23 for large intensities. The existence of an intermediate integral scale is also found at which the turbulent speed is maximized. When two-dimensional flames are subject to turbulence, the primary wrinkling patterns give rise to polyhedral-cellular structures which bear a very close resemblance to those observed in experiments on hydrodynamically unstable expanding spherical flames.  相似文献   

13.
We present the results of the experiment on studying the multifractal structure (with inhomogeneity sizes from tens to hundreds of meters across the Earth’s magnetic field) of the artificial ionospheric turbulence when the midlatitude ionosphere is affected by high-power HF radio waves. The experimental studies were performed on the basis of the “Sura” heating facility with the help of radio sounding of the disturbed region of the ionospheric plasma by signals from the Earth’s orbital satellites. The influence of the magnetic zenith effect on measured multifractal characteristics of the small-scale artificial turbulence of the midlatitude ionosphere was examined. In the case of vertical radio sounding of the disturbed ionosphere region, the measured multipower and generalized multifractal spectra of turbulence coincide well with similar multifractal characteristics of the ionospheric turbulence under natural conditions. This result is explained by the fact that the scattering of signals by weak quasi-isotropic small-scale inhomogeneities of the electron number density in a thick layer with a typical size of several hundred kilometers above the region of reflection of high-power HF radio waves gives the major contribution to the observed amplitude fluctuations of received signals. In the case of oblique sounding of the disturbance region at small angles between the line of sight to the satellite and the direction of the Earth’s magnetic field, the nonuniform structure of the small-scale turbulence with a relatively narrow multipower spectrum and small variations in the generalized multifractal spectrum of the electron number density was detected. Such a fairly well ordered structure of the turbulence is explained by the influence of the magnetic zenith effect on the generation of anisotropic small-scale artificial turbulence in a thin layer having a typical size of several ten kilometers and located below the pump-wave reflection height in the upper ionosphere.  相似文献   

14.
Coherent vortices in two-dimensional turbulence induce far-field effects that stabilize vorticity filaments and inhibit the generation of new vortices. We show that the large-scale energy sink often included in numerical simulations of statistically stationary two-dimensional turbulence reduces the stabilizing role of the vortices, leading to filament instability and to continuous formation of new coherent vortices. This counterintuitive effect sheds new light on the mechanisms responsible for vortex formation in forced-dissipated two-dimensional turbulence, and it has significant impact on the temporal evolution of the vortex population in freely decaying turbulence. The time dependence of vortex statistics in the presence of a large-scale energy sink can be approximately described by a modified version of the scaling theory developed for small-scale dissipation.  相似文献   

15.
The influence of weak electrostatic perturbations on the trajectories of circulating particles in a tokamak magnetic field is analyzed. The parameters of the trajectories calculated in the drift approximation allow one to determine the spatial scale of diffusion. The resonant interaction between particles and waves is considered. The possibility of the emergence of collisionless diffusion in the strong turbulence regime is analyzed.  相似文献   

16.
Interaction between small-scale zonal flows and large-scale turbulence is investigated. The key mechanism is identified as radially nonlocal mode coupling. Fluctuating energy can be nonlocally transferred from the unstable longer to the stable or damped shorter wavelength region, so that the turbulence spectrum is seriously deformed and deviates from the nonlinear power law structure. Three-dimensional gyrofluid ion-temperature gradient (ITG) turbulence simulations show that an ion transport bursting behavior is consistently linked to the spectral deformity with the causal role of ITG-generated zonal flows in tokamak plasmas.  相似文献   

17.
We present in situ measurements in a space plasma showing that thin current sheets the size of an ion inertial length exist and are abundant in strong and intermittent plasma turbulence. Many of these current sheets exhibit the microphysical signatures of reconnection. The spatial scale where intermittency occurs corresponds to the observed structures. The reconnecting current sheets represent a type of dissipation mechanism, with observed dissipation rates comparable to or even dominating over collisionless damping rates of waves at ion inertial length scales (x100), and can have far reaching implications for small-scale dissipation in all turbulent plasmas.  相似文献   

18.
We measure structure functions and structures in uniformly sheared strong turbulence using an array of hot-wire velocity sensors. We find that the large-scale shear persists down to the smallest scales. There is a marked asymmetry between velocity increments measured in the shear direction, and those measured in the plane perpendicular to it. In the shear direction the scaling exponents tend to a constant, signifying the presence of small-scale cliffs. Direct evidence for those is presented by the spatial structure of the strongest velocity gradients.  相似文献   

19.
The plasmon turbulence parametrically excited by two strong external waves with a frequency difference close to twice the electron plasma frequency is investigated in underdense plasmas. The nonlinear stabilization of the growing plasmons due to scattering by ions is described by a nonlinear integro-differential equation for the spectral plasmon energy density. The dependence of the turbulent relaxation of the plasmon energy and its stationary level on the parameters of the plasma and the pump waves is given by analytical and numerical solutions of this equation.  相似文献   

20.
The effect of data assimilation of large-scale eddies on small-scale eddies in turbulence is studied by direct numerical simulations (DNSs) of Navier-Stokes turbulence with Taylor microscale Reynolds numbers up to 179. The DNSs show that even if the data of small-scale eddies are lost at some initial instant, they can be regenerated from the data of large-scale eddies under the condition that Fourier modes with wave number less than a critical wave number k(*) are continuously assimilated, where k(*) approximately 0.2eta(-1) with eta identical with(nu(3)/epsilon)(1/4), epsilon the mean energy dissipation rate, and nu the viscosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号