首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
利用激光解吸附电离飞行时间质谱技术获得了若干已知化学成分的气溶胶粒子的飞行时间质谱,分析标识了各类气溶胶粒子的特征离子谱峰,并对一些特征峰的形成机理进行了探讨。在此基础上,对烟花火药以及纸张燃烧产生的烟气气溶胶粒子进行了实时在线测量,通过对质谱图的分析,获得了有关此两类燃烧过程产生的烟气气溶胶单粒子的化学组成信息。  相似文献   

2.
为了在线快速、自动处理气溶胶激光飞行时间质谱仪在运行过程中产生的海量数据并提取有价值的信息,将基于神经网络的自适应共振算法运用于气溶胶单粒子化学成分在线聚类分析.利用该算法对NaCl粒子、NaCl和CaCl2的气溶胶混合物、三聚氰胺气溶胶单粒子以及大气气溶胶单粒子进行在线分类,被成功分类的粒子数占命中粒子总数的100%,当警戒阈值为0.1,学习速率为0.05时,获得的每类聚类中心都能很好地代表该类物质的特征;深入研究了警戒阈值对NaCl粒子在线聚类数的影响.结果表明: 当警戒阈值增大到0.8时,在线聚类数增多,分类更加精细.本算法的质谱分析软件基本满足大气气溶胶单粒子在线聚类分析的要求.  相似文献   

3.
气溶胶飞行时间质谱仪(ATOFMS)在对气溶胶粒子的测量过程中,产生大量包含单粒子化学成分和粒径信息的数据。本研究采用具备矢量量化与数据降维能力的自组织特征映射网络(SOM),对自制的气溶胶飞行时间质谱仪24 h采集到的室内大气气溶胶质谱数据进行聚类分析。获得"含钙"、"盐类和二次气溶胶"、"二次颗粒"、"有机胺"、"富含钾有机物"、"无机盐"和"土壤"等20类颗粒。相比于其它聚类方法,SOM可进行可视化分析,对神经元进行再次聚类,聚类中心多。这些分类信息将有助于评估气溶胶粒子的反应和毒性,以及鉴别气溶胶粒子的起源。  相似文献   

4.
单颗粒气溶胶飞行时间质谱仪分析香烟烟气气溶胶   总被引:2,自引:0,他引:2  
单颗粒气溶胶飞行时间质谱可同时对气溶胶单颗粒的粒径大小、化学成分进行实时、在线检测.本研究介绍了新近研制的单颗粒质谱仪的原理、结构、主要技术指标及对香烟烟气气溶胶的应用研究.仪器采用空气动力学透镜聚焦,双光束粒径测量系统确定颗粒物的空气动力学直径,激光电离系统实现颗粒物精确电离,通过双极有网反射飞行时间质量分析器实现正负离子同时检测.香烟检测结果表明,在颗粒物粒径分布上,新鲜香烟烟气颗粒范围较老化烟气宽.在气溶胶化学成分上,老化烟气颗粒物与新鲜烟气相比,尼古丁,氰酸盐,硝酸盐,硫酸盐及铵盐5种成分的数浓度百分比都有所增加,而含C1-的数浓度百分比减少.原因可能是由于烟气由气相到粒相之间的转化,及颗粒物与空气中的气体发生了非均相反应;C1-老化之后的减少是因为HN03与CI-之间的非均相反应.  相似文献   

5.
在烟雾腔内, 用紫外光照射甲苯、亚硝酸甲酯、一氧化氮和空气的混合物, 可以启动甲苯和羟基自由基(OH·)的光氧化反应和一系列的后续反应, 产生非挥发性和半挥发性有机化合物. 半挥发性有机化合物可以在气态和粒子态之间进行分配, 产生二次有机气溶胶粒子. 用自制的气溶胶飞行时间质谱仪, 快速、实时测量这些粒子的尺度、它们的分子成分和直径分布.  相似文献   

6.
在自制的烟雾腔内,研究羟基自由基(OH·)启动的乙苯的光氧化反应和一系列后续反应,产生了二次有机气溶胶. 采用空气动力学直径粒谱分析仪分析了气溶胶粒子的尺寸分布;并用自制的气溶胶飞行时间质谱仪快速、实时地测量了单个二次有机气溶胶粒子的分子组分. 初步探讨了这些组分的可能反应机理.  相似文献   

7.
ICP—MS在线定量分析气溶胶粒子的技术研究   总被引:2,自引:0,他引:2  
对感应耦合等离子体质谱(ICP-MS)在线快速定量分析气溶胶粒子技术进行了研究.振荡床发生稀土气溶胶粒子,将ICP-MS测得的离子簇脉冲数浓度与凝结核粒子计数器的读数比较,得到ICP-MS对粒子数浓度的相对计数效率.结果表明,ICP-MS对粒子数浓度的计数效率接近1.用振动孔气溶胶发生器发生单分散的硝酸铽粒子,并将ICP-MS测得的粒子中铽的响应信号与气溶胶发生器的计算值比较,获得了ICP-MS质量探测效率与质量的关系.在粒子物理直径实验范围内(0.4 ~3 μm),ICP-MS探测到的离子数与粒子中Tb的质量呈线性关系,表明在该范围内探测效率与粒径无关.初步研究结果表明,用ICP-MS既可进行连续气溶胶粒子的化学定量分析,也可进行每秒10个单粒子的化学定量分析.ICP-MS在环境气溶胶在线快速分析,尤其是气溶胶粒子中难熔金属和超铀元素超痕量在线环境监测方面具有潜在的应用前景.  相似文献   

8.
气溶胶粒子通过填充柱的保留时间分布测定   总被引:1,自引:0,他引:1  
采用亚微米单分散聚苯乙烯球形硬气溶胶粒子和脉冲进样技术,测定了气溶胶粒子通过无规则石英砂填充柱的保留时间分布,从保留时间分布曲线得到了气溶胶粒子在填充柱中的平均保留时间和穿透率.研究了平均保留时间和穿透率与流体流速、填充柱的长度、填料粒度和气溶胶粒子大小之间的关系.研究发现,流速越大,保留时间分布曲线越尖锐,流速越小,保留时间分布曲线越平坦;气溶胶粒子的穿透率随着柱长的增加而降低,随流速、气溶胶粒子粒径和石英砂颗粒大小的减小而减小;平均保留时间随柱长增加而增大,随流速增大而减小,随气溶胶粒子粒径减小而减小,而与石英砂颗粒大小几乎无关.  相似文献   

9.
颗粒挥发性可以影响颗粒在大气中的寿命,对大气颗粒物中二次气溶胶的形成机制研究有一定的参考价值。以往研究测量颗粒挥发性采用的是热熔蚀器,其活性炭吸附器一旦老化后,在较高温度下可能会释放出活性炭,造成测量失真。本研究针对热熔蚀器的上述缺点,以稀释器替代活性炭吸附器部分,与单颗粒气溶胶质谱仪(SPAMS)连接,建立了一种在线分析单个气溶胶颗粒挥发性的测量方法。气溶胶颗粒分别通过两个通道进入SPAMS分析颗粒信息。通道1,气溶胶颗粒由管路进入加热器,被加热至不同的温度,颗粒挥发产生的气体和挥发后的颗粒内核进入稀释器部分,利用干净干燥冷的稀释气对加热挥发后的气体和颗粒进行稀释,使颗粒温度降低并短时间内不与气体发生冷凝,最后进入SPAMS进行检测。通道2为单独硅胶管,其长度与通道1相同,气溶胶颗粒通过通道2直接进入SPAMS检测。通过对比通道1和通道2获得的颗粒信息(粒径、数目和质谱信息等),得到气溶胶颗粒在不同温度下的挥发性。实验室用标准物质进行评估测试,结果表明,采用稀释器可以避免活性炭吸附器使用时间变长而失效,防止挥发性物质冷凝回到颗粒中。应用本方法初步测定了广州市春季气溶胶的挥发性,表明春季气溶胶多为高度挥发性和中度挥发性物质。  相似文献   

10.
单颗粒气溶胶质谱技术起源于20世纪70年代,在近二十年得到了快速的发展.单颗粒气溶胶飞行时间质谱仪具有高时间分辨率,且同时测量大气中单个细颗粒物粒径、多种化学组分和混合状态的特点,在大气细颗粒物监测和科学研究中逐渐得到了广泛应用.本文对单颗粒气溶胶飞行时间质谱仪的发展历程进行了介绍,对目前已商品化的单颗粒气溶胶飞行时间质谱仪ATOFMS和SPAMS的原理、数据分析方法、结果输出方式以及在环境监测和研究中的主要应用进行了总结,并指出单颗粒气溶胶飞行时间质谱仪的发展方向.  相似文献   

11.
The Kosa (yellow sand) aerosol affects the global environment as well as human health because it migrates from the interior of China to other areas, absorbing various atmospheric elements. Investigation into individual Kosa aerosol particles, which are submicroscopic to several tens of micrometers in diameter, is required to resolving the issue. We installed a scanning electron microscope (SEM) equipped with an energy dispersive X-ray spectrometer (EDX) on a synchrotron radiation (SR) beam line and introduced the SR beam into the SEM chamber for combinatorial application of SEM-EDX and SR X-ray fluorescence (SR-XRF) spectrometry to individual particles. It should be noted that detailed topographic observation by SEM and sensitive elemental analysis by SR-XRF, both crucial for individual particle measurement but which previously had to be carried out separately, were jointly performed inside the SEM chamber in this setup. Here, we show that SR-XRF results, in conjunction with SEM images, contributed toward resolving individual particle dispositions. Atmospheric sulfur primarily adheres to calcium in the aerosol particles and the particle surface roughens as a consequence of the chemical reaction between the two elements.  相似文献   

12.
A real-time analysis of secondary organic aerosol (SOA) particles formed from cyclohexene ozonolysis in a smog chamber was performed using a laser-ionization single-particle aerosol mass spectrometer (LISPA-MS). The instrument obtains both size and chemical compositions of individual aerosol particles with a high time-resolution (approximately 2 s at the maximum). Both positive and negative-ion mass spectra are obtained. Standard particles generated from dicarboxylic acid solutions using an atomizer were also analyzed. For both standard and SOA particles, the negative-ion mass spectra provided information about the molecular weights of the organic compounds in the particles, since the intense ions in the negative-ion mass spectra are mainly attributable to the molecular-related ions [M-H]-. It was demonstrated that the real-time single-particle analysis of SOA particles by the LISPA-MS technique can reveal the formation and transformation processes of SOA particle in smog chambers.  相似文献   

13.
Real-time,single-particle measurements of ambient aerosols in Shanghai   总被引:1,自引:0,他引:1  
As one of the major components of the earth’s atmosphere, airborne particulate matter (or aerosol) has strong effects on air quality, regional and global climate, and human health. In ambient atmosphere, the different sources and complex evolutionary history of aerosol particles make the study of their chemical and physical properties extremely challenging. The invention of an online single-particle aerosol mass spectrometer provides a powerful technique to determine the size and chemical composition of individual aerosol particles in real time. We deployed an aerosol time-of-flight mass spectrometer (ATOFMS) to carry out single particle measurement in the urban area of Shanghai in the past few years. In this review paper, we summarize our recent work on the identification of particle type, mixing state and aging process, and the application of the individual particle information to the source apportionment of primary aerosol, and the investigation of the formation mechanism of secondary aerosol in Shanghai. The special capabilities of single particle mass spectrometry are proven essential to these studies. Multi-functional technique combinations of ATOFMS with other state-of-art aerosol instruments are also discussed for future studies.  相似文献   

14.
In-situ imaging of aerosol particles deposited on mica in the TM-AFM liquid cell has been performed in order to study their dissolution behavior. The results show that the implementation of in-situ experiments is very useful for obtaining information on the physical and chemical behavior of individual particles. Experiments were carried out using ammonium sulfate and soot-like particles as test aerosols. Water soluble fractions can be easily distinguished from insoluble fractions. This can also be utilized to proof the existence of internally mixed particles. These model experiments are an important basis for further investigations on airborne particles involving other solvent systems and time resolved measurements.  相似文献   

15.
Matrix-assisted laser desorption/ionization (MALDI) mass spectra were obtained from single biological aerosol particles using an aerosol time-of-flight mass spectrometer (ATOFMS). The inlet to the ATOFMS was coupled with an evaporation/condensation flow cell that allowed the aerosol to be coated with matrix material as the sampled stream entered the spectrometer. Mass spectra were generated from aerosol composed either of gramicidin-S or erythromycin, two small biological molecules, or from aerosolised spores of Bacillus subtilis var niger. Three different matrices were used: 3-nitrobenzyl alcohol, picolinic acid and sinapinic acid. A spectrum of gramicidin-S was generated from approximately 250 attomoles of material using a molar ratio of 3-nitrobenzyl alcohol to analyte of approximately 20:1. A single peak, located at 1224 Da, was obtained from the bacterial spores. The washing liquid and extract solution from the spores were analyzed using electrospray mass spectrometry and subsequent MS/MS product ion experiments. This independent analysis suggests that the measured species represents part of the B. subtilis peptidoglycan. The on-line addition of matrix allows quasi-real-time chemical analysis of individual, aerodynamically sized particles, with an overall system residence time of less than 5 seconds. These results suggest that a MALDI-ATOFMS can provide nearly real-time identification of biological aerosols. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

16.
Over the past decade, aerosol mass spectrometry has developed into a powerful method for characterizing individual particles in air. Recent advances in the design of inlets and mass spectrometers have extended the size range of particles that can be analyzed. In this tutorial, fundamental aspects of particle motion in sampling inlets are introduced. Basic experimental configurations for achieving a high analysis rate and the ability of laser ablation to provide chemical composition information are reviewed. An example of the use of this technology to study atmospheric phenomena is also presented. Significant opportunity exists for designing new experiments at the interface of aerosol mass spectrometry and conventional molecular mass spectrometry.  相似文献   

17.
A polarization-sensitive laser light scattering (PSLLS) method and a dual-angle laser light scattering (DALLS) method have been studied for in situ measurement of submicrometer hydrosol and aerosol particles. By using standard monodisperse polystyrene latex particles suspended in water and air as test particles, calibration of systems built based on the above methods have been performed. The effects of light scattered by agglomerated aerosol particles (multiplets) were corrected by considering the fraction of multiplets as determined with an aerosol measurement technique using a differential mobility analyzer. The change in the measured intensities of scattered light with particle diameter was then determined by calculations based on Mie theory. It was shown that the PSLLS system can determine particle diameters as small as approximately 60 nm for the test hydrosol particles and approximately 100 nm for test aerosol particles, respectively. The DALLS system can determine smaller diameters than the PSLLS system for test particles with no light absorption. The change in scattered light intensities with particle diameter was also investigated by theoretical calculations with various refractive indexes and scattering angles. The PSLLS and DALLS systems promise to become routine measurement tools for absorbing and nonabsorbing particles, respectively. Copyright 2001 Academic Press.  相似文献   

18.
Characterization, identification, and detection of aerosol particles in their native atmospheric states remain a challenge. Recently, optical trapping-Raman spectroscopy (OT-RS) has been developed and demonstrated for characterization of single, airborne particles. Such particles in different chemical groups have been characterized by OT-RS in recent years and many more are being studied. In this work, we collected single-particle Raman spectra measured using the OT-RS technique and began construction of a library of OT-RS fingerprints that may be used as a reference for potential detection and identification of aerosol particles in the atmosphere. We collected OT-RS fingerprints of aerosol particles from eight different categories including carbons, bioaerosols (pollens, fungi, vitamins, spores), dusts, biological warfare agent surrogates, etc. Among the eight categories, spectral fingerprints of six groups of aerosol particles have been published previously and two other groups are new. We also discussed challenges, limitations, and advantages of using single-particle optical trapping-Raman spectroscopy for aerosol-particle characterization, identification, and detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号