首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The 2,2′:6′,2″-terpyridines 7a-c were prepared in good yield by reacting α-acetoxy-α-chloro-β-keto-esters 3a-c with bis-amidrazone 4 and 2,5-norbornadiene 6 in ethanol at reflux. Compounds 3a and 3b gave the 2,2′:6′,2″-terpyridines 9a and 9b, respectively, in moderate yield when treated with compound 4 and enamine 8.  相似文献   

2.
Amidrazone 1 and the tricarbonyl derivatives 2a-c gave the triazines 3a-c, respectively, which reacted with 2,5-norbornadiene 4 in boiling ethanol yielding the corresponding novel 2,2′-bipyridines 5a-c in good yield. Triazine 6 gave the 2,2′-bipyridyl derivative 7 (65%) with compound 4 in 1,2-dichlorobenzene at 140°C.  相似文献   

3.
A new route to thiacrown ethers 5a-d and 6a-d incorporating a 2,2′-bipyridine subunit is elaborated using, (1) homo-coupling of 1,2,4-triazine sulfides 3a-d tethered to poly(ethylene glycol) chains with potassium cyanide and (2) Diels-Alder/retro Diels-Alder reaction with norbornadiene or 1-pyrrolidino-1-cyclopentene as the key steps.  相似文献   

4.
D Branowska 《Tetrahedron》2004,60(28):6021-6027
1,2,4-Triazines bearing cycloalkeno[c]pyridine substituents at the 5-position, 2a-d, prepared by an intermolecular Diels-Alder reaction of bi-5,5-triazines with cyclic enamines, were provided with an alkynyloxy or a 2-cyanophenoxy group at the 3-position of the triazinyl unit. A subsequent intramolecular Diels-Alder reaction of the former, followed by loss of N2 leads to two new classes of 2,2′-bipyridine analogues containing different heterocyclic units, namely cycloalkeno[c]pyridine and 2,3-dihydrofuro- or 2,3-dihydropyrano[2,3-b]pyridine 8a-h; the intramolecular reaction of the 2-cyanophenoxy compound gives benzo[4,5]furo[2,3-b]pyrazine 10a-c.  相似文献   

5.
A new route to cyclophanes 6a,b incorporating 2,2′-bipyridine subunits has been elaborated using as the key steps (1) S-transalkylation of 6,6′-bis(methylsulfanyl)-2,2′-bipyridines 2a,b with ethyl bromoacetate resulting in the formation of 6,6′-bis[(ethoxycarbonyl)methylsulfanyl]-2,2′-bipyridines 3a,b and (2) ring-closing metathesis of the corresponding alkenyl ethers 5a,b.  相似文献   

6.
The dimeric starting material [Ru(η6-p-cymene)(μ-Cl)Cl]2 reacts with N3,N3′-bis(diphenylphosphino)-2,2′-bipyridine-3,3′-diamine, 1 and P,P′-diphenylphosphinous acid-P,P′-[2,2′-bipyridine]-3,3′-diyl ester, 2 ligands to afford bridged dinuclear complexes [C10H6N2{NHPPh2-Ru(η6-p-cymene)Cl2}2], 3 and [C10H6N2{OPPh2-Ru(η6-p-cymene)Cl2}2], 4 in quantitative yields. These bis(aminophosphine) and bis(phosphinite) based Ru(II) complexes serve as active catalyst precursors for the transfer hydrogenation of acetophenone derivatives in 2-propanol and especially 4 acts as a good catalyst, giving the corresponding alcohols in 99% yield in 20 min (TOF ? 280 h−1).  相似文献   

7.
The straightforward synthesis of four novel 2′,3′-dideoxy-6′,6′-difluoro-3′-azanucleosides 1a-d is described. Efficient construction of the fluorine-containing pyrrolidine ring through two different ways and installation of pyrimidine rings using the amino groups in the intermediates 12, 26 were the key steps of our synthesis.  相似文献   

8.
The addition of hydrazine to functionalized furans 2a-d leads to a variety of 4,4′-bipyrazoles 4a-c depending on the structure of the starting materials. In one example, compound 2c was first converted to an intermediate, furo[3,4-d]pyridazine 3c which was then transformed into 4,4′-bipyrazole 4c on reacting with hydrazine.  相似文献   

9.
Xuyi Yue  Feng-Ling Qing 《Tetrahedron》2007,63(7):1560-1567
A series of novel 2′,3′-dideoxy-6′,6′-difluoro-3′-thionucleosides 1a-d, analogues of 3TC that has high biological activities against HIV and HBV, have been synthesized from the gem-difluorohomoallyl amine 7 in a straightforward fashion. Our synthesis featured the construction of thiofuranose skeleton through ring closure of key intermediates and installation of pyrimidine ring with amino group in compounds 13a,b.  相似文献   

10.
We report herein the synthesis of appropriately protected 2′-deoxy-2′-fluoro-4′-thiouridine (5), -thiocytidine (7), and -thioadenosine (35) derivatives, substrates for the synthesis of novel modified RNAs. The synthesis of 5 and 7 was achieved via the reaction of 2,2′-O-anhydro-4′-thiouridine (3) with HF/pyridine in a manner similar to that of its 4′-O-congener whereas the synthesis of 35 from 4′-thioadenosine derivatives was unsuccessful. Accordingly, 35 was synthesized via the glycosylation of the fluorinated 4-thiosugar 25 with 6-chloropurine. The X-ray crystal structural analysis revealed that 2′-deoxy-2′-fluoro-4′-thiocytidine (8) adopted predominately the same C3′-endo conformation as 2′-deoxy-2′-fluorocytidine.  相似文献   

11.
The preparation and inclusion properties of the new halo aryl hosts, 2,2′,7,7′,9,9′-hexahalo-9,9′-bisfluorenyl derivatives 5-7, are described. The host compounds 5-7 having four halogen atoms on the aromatic rings form stable inclusion crystals with many guest compounds, whereas the parent compound 4 does not. The X-ray structures of the host 4 and representative inclusion compounds of hosts 5-7 were determined, allowing rationalization of several of the experimental observations.  相似文献   

12.
Shin-ichi Naya 《Tetrahedron》2008,64(14):3225-3231
As novel methodology for synthesizing the furan ring, a photoinduced oxidative cyclization of 5-(4′,9′-methanocycloundeca-2′,4′,6′,8′,10′-pentaenylidene)pyrimidine-2,4,6(1,3,5H)-triones (7a-c) and related compounds 9a-c was accomplished to give 5,10-methanocycloundeca[4,5]furo[2,3-d]pyrimidine-2,4(1,3H)-dionylium tetrafluoroborates (8a-c+·BF4) and related compounds 2a-c+·BF4, respectively. In the photoinduced oxidative cyclization, the molecular oxygen in air is used as oxidant and the reaction proceeds under mild conditions to give desired products without byproducts, and thus, it is interesting from the viewpoint of the green chemistry. On the reactions of the mono-substituted derivatives 7d,e and 9e,f, the selectivity of the photoinduced cyclizations were reversed as compared with those of the DDQ-promoted oxidative cyclizations. By the NMR monitoring of the reactions of 7a and deuterated compound 7a-D2 under degassed conditions, the details of the reaction pathway were clarified and rationalized on the basis of the MO calculation by the 6-31G basis set of the MP2 levels as well.  相似文献   

13.
Four new compounds [Ni2(4,4′-bpy)(3,4-bptc)(H2O)4]n (1), [Ni(4,4′-bpy)(3,4-H2bptc)(H2O)3]n (2), [Mn2(2,2′-bpy)4(3,4-H2bptc)2] (3) and {[Mn(1,10-phen)2(3,4-H2bptc)]·4H2O}n (4) (3,4-H4bptc=3,3′,4,4′-biphenyltetracarboxylic acid, 4,4′-bpy=4,4′-bipyridine, 2,2′-bpy=2,2′-bipyridine, 1, 10-phen=1, 10-phenanthroline), have been prepared and structurally characterized. In all compounds, the derivative ligands of 3,4-H4bptc (3,4-bptc4− and 3,4-H2bptc2−) exhibit different coordination modes and lead to the formation of various architectures. Compounds 1 and 2 display the three-dimensional (3D) framework: 1 shows a 3,4-connected topological network with (83)(85·10) topology symbol based on the coordination bonds while in 2, the hydrogen-bonding interactions are observed to connect the 1D linear chain generating a final 3D framework. 3 exhibits the 2D layer constructed from the hydrogen-bonding interactions between the dinuclear manganese units. Complex 4 shows the double layers motif through connecting the 1D zigzag chains with hydrogen-bonded rings. The thermal stability of 1-4 and magnetic property of 1 were also reported.  相似文献   

14.
The synthesis of conformationally strained 2,2′-bipyridine thiamacrocycles 5, 6, 9, 10 and their chiral sulfoxides 11-14 is elaborated using, (1) homo-coupling of 1,2,4-triazine sulfide 3 with potassium cyanide and (2) Diels-Alder/retro Diels-Alder (DA-rDA) with 2,5-norbornadiene or 1-pyrrolidino-1-cyclopentene as the key steps. The crystal structure determinations of 4-6 and the theoretical calculations at DFT/B3LYP/6-311G∗∗ level were conducted thus establishing conformational preferences of the target thiamacrocycles  相似文献   

15.
A concise synthesis of the spiro[(2,2-dimethyl-[1,3]-dioxane)-5,2′-(2′,3′-dihydroindole)] nucleus from substituted benzyl chlorides and 5-(hydroxymethyl)-2,2-dimethyl-5-nitro-1,3-dioxane 5 as starting materials is reported. The nitro intermediates 6 and 7 were prepared under SRN1 reaction conditions.  相似文献   

16.
4,4′,5,5′-Tetraiododibenzo-24-crown-8 (9), a practical building block, was prepared under efficient and mild reaction conditions starting from the simple starting material, catechol (1). Highly conjugated 4,4′,5,5′-tetraethynyldibenzo-24-crown-8 (10a,b) were prepared via a Sonogashira coupling reaction from tetraiodocrown ether 9. These highly conjugated crown ethers form complexes in CD2Cl2 with dibenzylammonium hexafluorophosphate in a 1:1 ratio. Emission spectrum of pseudorotaxane 11 shows a dramatic shift from the non-complexed precursor.  相似文献   

17.
A series of 2,2′-bipyridines featuring fluorinated alkyl groups [(CH2)3(CF2)xCF3: x = 0, (1); 5, (2); 7, (3); 9 (4)] appended in the 4 and 4′ positions have been prepared. 1-4 were characterized by spectroscopy and physical methods including partition coefficient (biphase: perfluoromethylcyclohexane/toluene) and cyclic voltammetry (THF). Ab-initio calculations of vertical ionization potentials (VIPs) for 1-4 confirm the insulating role of the methylene spacers as the electrochemical reduction potentials of 1-4 are almost identical to that of 2,2′-bipyridine. Calculations for (CH2)nCF3 derivatives (n = 0-10) describe a limit for impact of the CF3 group through 9-10 methylenes. From both physical and theoretical data fluorinated alkyl groups of the formula (CH2)3(CF2)xCF3 [x = 0-9] are inductively equivalent to a hydrogen substituent when appended to the bipyridine moiety.  相似文献   

18.
Amidrazone 1a and the tricarbonyl derivatives 2b-d reacted in boiling ethanol in the presence of 2,5-norbornadiene 5 giving the pyridine derivatives 6b-d respectively (59-72%) and in the presence of 2,3-dihydrofuran 7 yielding the lactones 10b-d (39-44%). The 2,2′-bipyridine derivatives 6e-g were similarly obtained in good yield (81-87%) from the reaction of amidrazone 1b and tricarbonyl derivatives 2b-d in the presence of 2,5-norbornadiene 5.  相似文献   

19.
A convenient method for the preparation of benzofuro[3,2-c]isoquinoline derivatives is described. The condensation reaction of methyl 2-(chloromethyl)-benzoate with substituted salicylonitriles 7a-c and intramolecular cyclization of the resulting substituted methyl 2-[(2-cyanobenzyl)oxy]benzoates 10a-c using potassium tert-butoxide results in the substituted benzofuro[3,2-c]isoquinolin-5(6H)-ones 1a-c. The same sequence of reactions starting from 2-(chloromethyl)benzonitrile and compounds 7a-c gave substituted 5-aminobenzofuro[3,2-c]isoquinolines 13a-c. In addition, this method is useful for the synthesis of other heterocycles. For example, using 1-cyano-2-naphthol 16, instead of the salicylonitriles 7a-c, gives naphtho[1′,2′:4,5]furo[3,2-c]isoquinolines.  相似文献   

20.
Reaction of K2[PtCl4] or Na2[PdCl4] with 6,6′-diphenyl-2,2′-bipyridine, L, gives the cyclometallated species [Pt(L-H)Cl], 1, and [Pd(L-H)Cl], 2, respectively, where L-H is a terdentate N^N^C anionic ligand originated by direct activation of a C(sp2)-H bond. The crystal structure of 2 has been solved by X-ray diffraction and compared to that of the analogous complex [Pd(L′-H)Cl] L′ = 6-phenyl-2,2′-bipyridine. The second phenyl ring in 2 entails a considerable distortion of the coordination around the metal. A similar distortion is also to be expected in the analogous compound 1, due to the almost equal covalent radii of palladium(II) and platinum(II).From the complexes 1 and 2 the chloride can be displaced with AgBF4 and substituted by CO or PPh3 to give the corresponding cationic species. By reaction of 1 with Na[BH4] substitution of H for Cl can be achieved: the rare hydrido complex [Pt(L-H)H], stabilized only by nitrogen ligands, was isolated in the solid state and fully characterized in solution. It is noteworthy that in the case of the 6-phenyl-2,2′-bipyridine the analogous terminal hydride [Pd(L′-H)H] is unstable. In platinum chemistry the reaction of 6-substituted 2,2′-bipyridines is known to give either N^N^C or N′^C(3) rollover cyclometallation, depending on the nature of the metal precursor. In the case of 6,6′-Ph2-2,2′-bipy cyclometallation was also shown to undergo multiple C-H activation giving the C^N^C pincer complex [Pt(L-2H)(DMSO)]. The latter species can be related to complex 1: indeed its reaction with HCl produces complex 1 and [Pt(L-H)(DMSO)Cl], a rollover species with a pendant phenyl substituent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号