首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liu  Yang  Chen  Guoping  Tan  Xiao 《Nonlinear dynamics》2020,101(4):2157-2180
Nonlinear Dynamics - In this paper, the considered two-DOF system consists of a linear oscillator (LO) under external harmonic excitation and an attached lightweight nonlinear energy sink (NES)...  相似文献   

2.
Zhang  Yunfa  Kong  Xianren  Yue  Chengfei  Xiong  Huai 《Nonlinear dynamics》2021,105(1):167-190
Nonlinear Dynamics - Nonlinear energy sink (NES) refers to a typical passive vibration device connected to linear or weakly nonlinear structures for vibration absorption and mitigation. This study...  相似文献   

3.
This paper presents the experimental results of random excitation of a nonlinear two-degree-of-freedom system in the neighborhood of internal resonance. The random signals of the excitation and response coordinates are processed to estimate the mean squares, autocorrelation functions, power spectral densities, and probability density functions. The results are qualitatively compared with those predicted by the Fokker-Planck equation together with a non-Gaussian closure scheme. The effects of system damping ratios, nonlinear coupling parameter, internal detuning ratio, and excitation spectral density level are considered in both studies except the effect of damping ratios is not considered in the experimental investigation. Both studies reveal similar dynamic features such as autoparametric absorber effect and stochastic instability of the coupled system. The experimental results show that the autocorrelation function of the coupled system has the feature of ultra narrow band process and degenerates to a periodic one as the internal detuning departs from the exact internal resonance condition. The measured probability density functions of the response of the main system suggests that the Gaussian representation is sufticient as long as the excitation level is relatively low in the neighborhood of the system internal resonance condition.  相似文献   

4.
5.
The stochastic bifurcation and response statistics of nonlinear modal interaction under parametric random excitation are studied analytically, numerically and experimentally. Two basic definitions of stochastic bifurcation are first introduced. These are bifurcation in distribution and bifurcation in moments. bifurcation in moments is examined for the case of a coupled oscillator subjected to parametric filtered white noise. The center frequency of the excitation is selected to be close to either twice the first mode or second mode natural frequencies or the sum of the two. The stochastic bifurcation in moments is predicted using the Fokker-Planck equation together with gaussian and non-Gaussian closures and numerically using the Monte Carlo simulation. When one mode is parametrically excited it transfers energy to the other mode due to nonlinear modal interaction. The Gaussian closure solution gives close results to those predicted numerically only in regions well remote from bifurcation points. However, bifurcation points predicted by the non-Gaussian closure are in good agreement with those estimated by numerical simulation. Depending on the excitation level, the probability density of the excited mode is strongly non-Gaussian and exhibits multi-maxima as predicted by Monte Carlo simulation. Experimental tests are carried out at relatively low excitation levels. In the neighborhood of stochastic bifurcation in mean square the measured results exhibit different regimes of response characteristics including zero motion and occasional small random motion regimes. These two regimes are characterized by the phenomenon of on-off intermittency. Both regimes overlap and thus it is difficult to locate experimentally the bifurcation point.  相似文献   

6.
An analytical investigation is carried out on the free vibration of a two degree of freedom weakly nonlinear oscillator. Namely, the method of multiple time scales is first applied in deriving modulation equations for a van der Pol oscillator coupled with a Duffing oscillator. For the case of non-resonant oscillations, these equations are in standard normal form of a codimension two (Hopf-Hopf) bifurcation, which permits a complete analysis to be performed. Three different types of asymptotic states-corresponding to trivial, periodic and quasiperiodic motions of the original system-are obtained and their stability is analyzed. Transitions between these different solutions are also identified and analyzed in terms of two appropriate parameters. Then, effects of a coupling, a detuning, a nonlinear stiffness and a damping parameter are investigated numerically in a systematic manner. The results are interpreted in terms of classical engineering terminology and are related to some relatively new findings in the area of nonlinear dynamical systems.  相似文献   

7.
8.
In this paper, a method for the dynamic analysis of geometrically nonlinear elastic robot manipulators is presented. Robot arm elasticity is introduced using a finite element method which allows for the gross arm rotations. A shape function which accounts for the combined effects of rotary inertia and shear deformation is employed to describe the arm deformation relative to a selected component reference. Geometric elastic nonlinearities are introduced into the formulation by retaining the quadratic terms in the strain-displacement relationships. This has lead to a new stiffness matrix that depends on the rotary inertia and shear deformation and which has to be iteratively updated during the dynamic simulation. Mechanical joints are introduced into the formulation using a set of nonlinear algebraic constraint equations. A set of independent coordinates is identified over each subinterval and is employed to define the system state equations. In order to exemplify the analysis, a two-armed robot manipulator is solved. In this example, the effect of introducing geometric elastic nonlinearities and inertia nonlinearities on the robot arm kinematics, deformations, joint reaction forces and end-effector trajectory are investigated.  相似文献   

9.
The scaling of the solution of coupled conservative weakly nonlinear oscillators is demonstrated and analyzed through evaluating the normal modes and their bifurcation with an equivalent linearization technique and calculating the general solutions with a method of multiple seales. The scaling law for coupled Duffing oscillators is that the coupling intensity should be proportional to the total energy of the system.Present address: Department of Chemistry and Chemistry and Chemical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, U.S.A.  相似文献   

10.
Coupled strongly nonlinear oscillators, whose characteristic is close to linear for low amplitudes but becomes infinitely growing as the amplitude approaches certain limit, are considered in this paper. Such a model may serve for understanding the dynamics of elastic structures within the restricted space bounded by stiff constraints. In particular, this study focuses on the evolution of vibration modes as the energy is gradually pumped into or dissipates out of the system. For instance, based on the two degrees of freedom system, it is shown that the in-phase and out-of-phase motions may follow qualitatively different scenarios as the system’ energy increases. So the in-phase mode appears to absorb the energy with equipartition between the masses. In contrast, the out-of-phase mode provides equal energy distribution only until certain critical energy level. Then, as a result of bifurcation of the 1:1 resonance path, one of the masses becomes a dominant energy receiver in such a way that it takes the energy not only from the main source but also from another mass.  相似文献   

11.
In order to construct a plate theory for a thick transversely compressible sandwich plate with composite laminated face sheets, the authors make simplifying assumptions regarding distribution of transverse strain components in the thickness direction. The in-plane stresses and σyy (Fig. 1) are computed from the constitutive equations, and the improved values of transverse stress components and σzz need to be computed by integration of pointwise equations of motion in a post-process stage of the finite element analysis. The improved values of the transverse strains can also be computed in the post-process stage by substituting the improved transverse stresses into the constitutive relations. A problem of cylindrical bending of a simply supported plate under a uniform load on the upper surface is considered, and comparison is made between the displacements, the in-plane stress and the improved transverse stresses (obtained by integration of the pointwise equations of motion), computed from the plate theory, with the corresponding values of exact elasticity solutions. In this comparison, a good agreement of both solutions is achieved. In the finite element analysis of sandwich plates in cylindrical bending with small thickness-to-length ratios, the shear locking phenomenon does not occur. The model of a sandwich plate in cylindrical bending, presented in this paper, has a wider range of applicability than the models presented in literature so far: it can be applied to the sandwich plates with a wide range of ratios of thickness to the in-plane dimensions, with both thin and thick face sheets (as compared to the thickness of the core) and to the sandwich plates with both transversely rigid and transversely compressible face sheets and cores.  相似文献   

12.
Wang  Chengen  Moore  Keegan J. 《Nonlinear dynamics》2021,103(1):343-366
Nonlinear Dynamics - Due to the near monopoly held by nonlinear energy sinks in the study of targeted energy transfer, little research has been done on the flow of mechanical energy between...  相似文献   

13.
14.
The effect of parameter mismatch (diversity) taken from two-point distribution is studied numerically and theoretically in globally coupled Rössler chaotic systems. Two cases including mixed populations consisting of elements with different timescales and attractors are considered. In these two cases, the probability p of two-point distribution, which acts as an asymmetrical coupling on the system, plays a crucial role in determining the evolution of systems, and the rich dynamical phenomena are observed, especially for amplitude death (AD). The relationships between various dynamics are also discussed.  相似文献   

15.
Naeem  I.  Mahomed  F. M. 《Nonlinear dynamics》2009,57(1-2):303-311
Nonlinear Dynamics - We study the construction of approximate first integrals of approximate partial Euler–Lagrange equations via approximate partial Noether operators corresponding to a...  相似文献   

16.
Buckling instabilities in coupled nano-layers   总被引:1,自引:0,他引:1  
We study the dynamic buckling of a pair of dissimilar Euler-Bernoulli beams subject to compressive edge loading whose transverse displacements are coupled through non-linear interactions, a problem motivated by the mechanics of graphene layers. The transverse coupling models van der Waals interaction and is derived from a Lennard-Jones 12-6 potential. The beams are assumed to be a fixed distance apart at their ends, although this distance is not necessarily equal to the equilibrium distance as identified from the Lennard-Jones potential. Therefore, the equilibrium configuration is not necessarily straight. Via a Galerkin method, the governing equations are reduced to a system that can be used to calculate equilibrium configurations as well as the stability of these configurations. We show that the buckling instability in this model is significantly affected by the presence of the interaction force as well as the separation of the graphene layers at the boundaries.  相似文献   

17.
Novosibirsk. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 1, pp. 99–114, January–February.  相似文献   

18.
19.
We study the dynamics of a system of coupled linear oscillators with a multi-DOF end attachment with essential (nonlinearizable) stiffness nonlinearities. We show numerically that the multi-DOF attachment can passively absorb broadband energy from the linear system in a one-way, irreversible fashion, acting in essence as nonlinear energy sink (NES). Strong passive targeted energy transfer from the linear to the nonlinear subsystem is possible over wide frequency and energy ranges. In an effort to study the dynamics of the coupled system of oscillators, we study numerically and analytically the periodic orbits of the corresponding undamped and unforced hamiltonian system with asymptotics and reduction. We prove the existence of a family of countable infinity of periodic orbits that result from combined parametric and external resonance interactions of the masses of the NES. We numerically demonstrate that the topological structure of the periodic orbits in the frequency–energy plane of the hamiltonian system greatly influences the strength of targeted energy transfer in the damped system and, to a great extent, governs the overall transient damped dynamics. This work may be regarded as a contribution towards proving the efficacy the utilizing essentially nonlinear attachments as passive broadband boundary controllers. PACS numbers: 05.45.Xt, 02.30.Hq  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号