首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As realistic objects in the Universe, the black holes are surrounded by complex environment. By taking the effect of thermal environment into account, we investigate the evaporation process and the time evolutions (page curves) of the entanglement entropies of Hawking radiation of various types of black holes. It is found that the black holes with the thermal environments evaporate slower than those without the environments due to the environmental contribution of the energy flux in addition to Hawking radiation. For Schwarzschild black hole and Reissner-Nordström black hole in flat spaces, when the initial temperature of the black hole is higher than the environment temperature, the black holes evaporate completely and the Hawking radiation is eventually purified. For Schwarzschild-AdS black hole, it will evaporate completely and the Hawking radiation is purified when the environment temperature is lower than the critical temperature. Otherwise, it will reach an equilibrium state with the environment and the radiation is maximally entangled with the black hole. Our results indicate that the final state of the black hole is determined by the environmental temperature and the temporal evolution and the speed of the information purification process characterized by the page curve of the Hawking radiation is also influenced by the thermal environment significantly.  相似文献   

2.
In this paper, we review the one-dimensional quantum channel and investigate Hawking radiation of bosons and fermions in Kerr and Kerr-Newman black holes. The result shows the Hawking radiation can be described by the quantum channel. The thermal conductances are derived and related to the black holes’ temperatures. The electric conductance of the Kerr-Newman black hole is obtained and only related to the charge of emission particles.  相似文献   

3.
In this work we study both charged and uncharged particles tunneling across the horizon of spherically symmetric dilaton–axion black holes using Parikh–Wilczek tunneling formalism. Such black hole solutions have much significance in string theory based models. For different choices of the dilaton and axion couplings with the electromagnetic field, we show that the tunneling probability depends on the difference between initial and final entropies of the black hole. Our results, which agree with similar results obtained for other classes of black holes, further confirm the usefulness of Parikh–Wilczek formalism to understand Hawking radiation. The emission spectrum is shown to agree with a purely thermal spectrum only in the leading order. The modification of the proportionality factor in the area–entropy relation in the Bekenstein–Hawking formula has been determined.  相似文献   

4.
We revisit in detail the paradox of black hole information loss due to Hawking radiation as tunneling. We compute the amount of information encoded in correlations among Hawking radiations for a variety of black holes, including the Schwarzchild black hole, the Reissner–Nordström black hole, the Kerr black hole, and the Kerr–Newman black hole. The special case of tunneling through a quantum horizon is also considered. Within a phenomenological treatment based on the accepted emission probability spectrum from a black hole, we find that information is leaked out hidden in the correlations of Hawking radiation. The recovery of this previously unaccounted for information helps to conserve the total entropy of a system composed of a black hole plus its radiations. We thus conclude, irrespective of the microscopic picture for black hole collapsing, the associated radiation process: Hawking radiation as tunneling, is consistent with unitarity as required by quantum mechanics.  相似文献   

5.
It is argued that Hawking radiation has indeed been measured and shown to posses a thermal spectrum, as predicted. This contention is based on three separate legs. The first is that the essential physics of the Hawking process for black holes can be modelled in other physical systems. The second is the white hole horizons are the time inverse of black hole horizons, and thus the physics of both is the same. The third is that the quantum emission, which is the Hawking process, is completely determined by measurements of the classical parameters of a linear physical system. The experiment conducted in 2010 fulfils all of these requirements, and is thus a true measurement of Hawking radiation.  相似文献   

6.
Parikh-Wilzcek’s recent work, which treats the Hawking radiation as semi-classical tunneling process from the event horizon of four dimensional Schwarzshild and Reissner- Nordström black hole, indicates that self-gravitation gives a correction to the Hawking precisely thermal spectrum and the tunneling rate is related to the change of Bekenstein- Hawking, but satisfies the underlying unitary theory. In this paper, we extend the model to study the Hawking radiation of charged particles via tunneling from arbitrarily dimensional Reissner-Nordström black holes, and obtain the same result as Parikh-Wilzcek’s. Meanwhile, in this framework, we point out that the first law of the black hole thermodynamics is reliable and the information conservation is only suitable for the reversible process.  相似文献   

7.
王钢柱  王纪龙 《物理学报》2004,53(6):1669-1674
引入局域热平衡概念,用Damour-Ruffini方法和薄膜模型研究了缓变动态Kerr-Newman黑洞的Hawking辐射和熵.得到了黑洞的Hawking温度和辐射谱公式,Hawking温度随时间和视界面上的位置而变化,辐射谱为准黑体谱;计算了黑洞熵,当取与静态球对称黑洞情况相同的截断关系时便得到了黑洞的Bekenstein-Hawking熵.结果表明,缓变动态黑洞的温度是局域量,缓变动态黑洞的熵与稳态黑洞情况一样正比于黑洞视界面面积. 关键词: 缓变动态黑洞 Hawking辐射 黑洞熵  相似文献   

8.
We apply the non-equilibrium fluctuation theorems developed in the statistical physics to the thermodynamics of black hole horizons. In particular, we consider a scalar field in a black hole background. The system of the scalar field behaves stochastically due to the absorption of energy into the black hole and emission of the Hawking radiation from the black hole horizon. We derive the stochastic equations, i.e. Langevin and Fokker-Planck equations for a scalar field in a black hole background in the ?→0 limit with the Hawking temperature ?κ/2π fixed. We consider two cases, one confined in a box with a black hole at the center and the other in contact with a heat bath with temperature different from the Hawking temperature. In the first case, the system eventually becomes equilibrium with the Hawking temperature while in the second case there is an energy flow between the black hole and the heat bath. Applying the fluctuation theorems to these cases, we derive the generalized second law of black hole thermodynamics. In the present paper, we treat the black hole as a constant background geometry.Since the paper is also aimed to connect two different areas of physics, non-equilibrium physics and black holes physics, we include pedagogical reviews on the stochastic approaches to the non-equilibrium fluctuation theorems and some basics of black holes physics.  相似文献   

9.
The tunnelling mechanism is widely used to explain Hawking radiation. However, in many cases the analysis used to obtain the Hawking temperature only involves comparing the emission probability for an outgoing particle with the Boltzmann factor. Banerjee and Majhi improved this approach by explicitly finding a black body spectrum associated with black holes. Their result, obtained using a reformulation of the tunnelling mechanism, is in contrast to that of Parikh and Wilczek, who found an emission probability that is compatible with a non-strictly thermal spectrum. Using the recently identified effective state for a black hole, we solve this contradiction via a slight modification of the analysis by Banerjee and Majhi. The final result is a non-strictly black body spectrum from the tunnelling mechanism. We also show that for an effective temperature, we can express the corresponding effective metric using Hawking’s periodicity arguments. Potential important implications for the black hole information puzzle are discussed.  相似文献   

10.
It is well known that Hawking radiation can be treated as a quantum tunneling process of particles from the event horizon of black hole. In this paper, we attempt to apply the massive vector bosons tunneling method to study the Hawking radiation from the non-rotating and rotating dilaton black holes. Starting with the Proca field equation that govern the dynamics of massive vector bosons, we derive the tunneling probabilities and radiation spectrums of the emitted vector bosons from the static spherical symmetric dilatonic black hole, the rotating Kaluza-Klein black hole, and the rotating Kerr-Sen black hole. Comparing the results with the blackbody spectrum, we satisfactorily reproduce the Hawking temperatures of these dilaton black holes, which are consistent with the previous results in the literature.  相似文献   

11.
Parikh-Wilzcek's recent work, which treats the Hawking radiation as semi-classical tunneling process from the event horizon of static Schwarzshild and Reissner-Nordstroem black holes, indicates that the factually radiant spectrum deviates from the precisely thermal spectrum after taking the self-gravitation interaction into account. In this paper, we extend Parikh-Wilzcek's work to research the Hawking radiation via tunneling from new form of rotating Kerr-Newman solution and obtain a corrected radiant spectrum, which is related to the change of Bekenstein-Hawking entropy, and is not pure thermal, but is consistent with the underlying unitary theory. Meanwhile, we point out that the information conservation is only suitable for the reversible process and in highly unstable evaporating black hole (irreversible process) the information loss is possible.  相似文献   

12.
A Carnot cycle outside a Schwarzschild black hole is investigated in detail. We propose a reversible Carnot cycle with a black hole being the cold reservoir. In our model, a Carnot engine operates between a hot reservoir with temperature T1 and a black hole with Hawking temperature TH. By naturally extending the ordinary Carnot cycle to the black hole system, we show that the thermal efficiency for a reversible process can reach the maximal efficiency 1-TH/T1. Consequently, black holes can be used to determine the thermodynamic temperature by means of the Carnot cycle. The role of the atmosphere around the black hole is discussed. We show that the thermal atmosphere provides a necessary mechanism to make the process reversible.  相似文献   

13.
赵仁  张丽春  胡双启 《物理学报》2006,55(8):3898-3901
将黑洞看作由裸黑洞和二维热力学面(黑洞的视界)组成的正则系综,利用量子统计方法给出黑洞Hawking 辐射的能量谱.找到黑洞辐射温度与熵的关系. 关键词: Hawking辐射 正则系统 量子统计  相似文献   

14.
In the context of gravity’s rainbow, Planck scale correction on Hawking radiation and black hole entropy in Parikh and Wilczk’s tunneling framework is studied. We calculate the tunneling probability of massless particles in the modified Schwarzschild black holes from gravity’s rainbow. In the tunneling process, when a particle gets across the horizon, the metric fluctuation must be taken into account, not only due to energy conservation but also to spacetime Planck scale effect. Our results show that the emission rate is related to changes of the black hole’s quantum corrected entropies before and after the emission. In the same time, for the modified black holes, a series of correction terms including a logarithmic term to Bekenstein–Hawking entropy are obtained. Correspondingly, the spectrum of Planck scale corrected emission is obtained and it deviates from the thermal spectrum. In addition, a specific form of modified dispersion relation is proposed and applied.  相似文献   

15.
It has been shown recently that information is lost in the Hawking radiation of the linear dilaton black holes in various theories when applying the tunneling formalism of Parikh and Wilczek without considering quantum gravity effects. In this paper, we recalculate the emission probability by taking into account the log-area correction to the Bekenstein-Hawking entropy and the statistical correlation between quanta emitted. The crucial role of the quantum gravity effects on the information leakage and black hole remnant is highlighted. The entropy conservation of the linear dilaton black holes is discussed in detail. We also model the remnant as an extreme linear dilaton black hole with a pointlike horizon in order to show that such a remnant cannot radiate and its temperature becomes zero. In summary, we show that the information can also leak out of the linear dilaton black holes together with preserving unitarity in quantum mechanics.  相似文献   

16.
Considering the unfixed background space-time and self-gravitational interaction, we view the Hawking radiation of a stationary Kerr–Newman black hole by Hamilton–Jacobi method. Meanwhile, extending this work to non-stationary black holes, we attempt to investigate the Hawking radiation of the non-stationary Kerr–Newman black hole. Both of the results show the tunneling probabilities are related to the change of Bekenstein- Hawking entropy and the radiation spectrums deviate from the purely thermal one, which is in accordance with the known result.  相似文献   

17.
In this paper, we extend Parikh's recent work to two kinds of the black holes whose ADM mass is no longer identical to its mass parameter, each with a topological defect, one being a global monopole black hole and another a cosmic string black hole. We view Hawking radiation as a tunnelling process across the event horizon and calculate the tunnelling probability. From the tunnelling probability we also find a leading correction to the semiclassical emission rate. The results are consistent with an underlying unitary theory.  相似文献   

18.
Hawking radiation is nowadays being understood as tunnelling through black hole horizons. Here, the extension of the Hamilton–Jacobi approach to tunnelling for non-rotating and rotating black holes in different non-singular coordinate systems not only confirms this quantum emission from black holes but also reveals the new phenomenon of absorption into white holes by quantum mechanical tunnelling. The rôle of a boundary condition of total absorption or emission is also clarified.  相似文献   

19.
In some recent derivations thermal characters of the inner horizon have been employed; however, the understanding of possible role that may play the inner horizons of black holes in black hole thermodynamics is still somewhat incomplete. Motivated by this problem we investigate Hawking radiation of the Reissner-Nordström-Taub-NUT (RNTN) black hole by considering thermal characters of both the outer and inner horizons. We apply Damour-Ruffini method and the thin film brick wall model to calculate the temperature and the entropy of the inner horizon of the RNTN black hole. The inner horizon admits thermal character with positive temperature and entropy proportional to its area, and it thus may contribute to the total entropy of the black hole in the context of Nernst theorem. Considering conservations of energy and charge and the back-reaction of emitting particles to the spacetime, the emission spectra are obtained for both the inner and outer horizons. The total emission rate is the product of the emission rates of the inner and outer horizons, and it deviates from the purely thermal spectrum and can bring some information out. Thus, the result can be treated as an explanation to the information loss paradox.  相似文献   

20.
TeV-scale gravity theories allow the possibility of producing small black holes at energies that soon will be explored at the CERN LHC or at the Auger observatory. One of the expected signatures is the detection of Hawking radiation that might eventually terminate if the black hole, once perturbed, leaves the brane. Here, we study how the "black hole plus brane" system evolves once the black hole is given an initial velocity that mimics, for instance, the recoil due to the emission of a graviton. The results of our dynamical analysis show that the brane bends around the black hole, suggesting that the black hole eventually escapes into the extra dimensions once two portions of the brane come in contact and reconnect. This gives a dynamical mechanism for the creation of baby branes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号