首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigate the triplet-singlet relaxation in a double quantum dot defined by top gates in an InAs nanowire. In the Pauli spin blockade regime, the leakage current can be mainly attributed to spin relaxation. While at weak and strong interdot coupling relaxation is dominated by two individual mechanisms, the relaxation is strongly reduced at intermediate coupling and finite magnetic field. In addition we observe a characteristic bistability of the spin-nonconserving current as a function of magnetic field. We propose a model where these features are explained by the polarization of nuclear spins enabled by the interplay between hyperfine and spin-orbit mediated relaxation.  相似文献   

2.
A quantum dot spin light emitting diode provides a test of carrier spin injection into a qubit and a means for analyzing carrier spin injection and local spin polarization. Even with 100% spin-polarized carriers the emitted light may be only partially circularly polarized due to the geometry of the dot. We have calculated carrier polarization-dependent optical matrix elements for InAs/GaAs self-assembled quantum dots (SAQDs) for electron and hole spin injection into a range of quantum dot sizes and shapes, and for arbitrary emission directions. Calculations for typical SAQD geometries with emission along [110] show light that is only 5% circularly polarized for spin states that are 100% polarized along [110]. Measuring along the growth direction gives near unity conversion of spin to photon polarization and is the least sensitive to uncertainties in SAQD geometry.  相似文献   

3.
Linearly polarized light tuned slightly below the optical transition of the negatively charged exciton (trion) in a single quantum dot causes the spontaneous nuclear spin polarization (self-polarization) at a level close to 100%. The effective magnetic field of spin-polarized nuclei shifts the optical transition energy close to resonance with photon energy. The resonantly enhanced Overhauser effect sustains the stability of the nuclear self-polarization even in the absence of spin polarization of the quantum dot electron. As a result the optically selected single quantum dot represents a tiny magnet with the ferromagnetic ordering of nuclear spins-the nuclear spin nanomagnet.  相似文献   

4.
We measure the strength and the sign of hyperfine interaction of a heavy hole with nuclear spins in single self-assembled quantum dots. Our experiments utilize the locking of a quantum dot resonance to an incident laser frequency to generate nuclear spin polarization. By monitoring the resulting Overhauser shift of optical transitions that are split either by electron or exciton Zeeman energy with respect to the locked transition using resonance fluorescence, we find that the ratio of the heavy-hole and electron hyperfine interactions is -0.09 ± 0.02 in three quantum dots. Since hyperfine interactions constitute the principal decoherence source for spin qubits, we expect our results to be important for efforts aimed at using heavy-hole spins in quantum information processing.  相似文献   

5.
The possibility of self-polarization of nuclear spins predicted by M.I. D’yakonov and V.I. Perel’ (JETP Lett. 16, 398 (1972)) has been investigated in the case of the electric current passing through a single quantum dot. The mechanisms of nuclear spin relaxation in the quantum dot leading to the polarization and depolarization of the nuclei are discussed. To make the nuclear polarization possible, it has been proposed to increase the nuclear polarization rate via the interaction of an electron localized in the quantum dot with electromagnetic oscillations in an electric circuit, whose proper frequency is tuned to a resonance with the Zeeman splitting of an electron level in the quantum dot.  相似文献   

6.
The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.  相似文献   

7.
We show that by illuminating an InGaAs/GaAs self-assembled quantum dot with circularly polarized light, the nuclei of atoms constituting the dot can be driven into a bistable regime, in which either a thresholdlike enhancement or reduction of the local nuclear field by up to 3 T can be generated by varying the pumping intensity. The excitation power threshold for such a nuclear spin "switch" is found to depend on both the external magnetic and electric fields. The switch is shown to arise from the strong feedback of the nuclear spin polarization on the dynamics of the spin transfer from electrons to the nuclei of the dot.  相似文献   

8.
Electron transport properties of a triple-terminal Aharonov-Bohm interferometer are theoretically studied. By applying a Rashba spin-orbit coupling to a quantum dot locally, we find that remarkable spin polarization comes about in the electron transport process with tuning the structure parameters, i.e., the magnetic flux or quantum dot levels. When the quantum dot levels are aligned with the Fermi level, there only appear spin polarization in this structure by the presence of an appropriate magnetic flux. However,in absence of magnetic flux spin polarization and spin separation can be simultaneously realized with the adjustment of quantum dot levels, namely, an incident electron from one terminal can select a specific terminal to depart from the quantum dots according to its spin state.  相似文献   

9.
We present a comprehensive examination of optical pumping of spins in individual GaAs quantum dots as we change the net charge from positive to neutral to negative with a charge-tunable heterostructure. Negative photoluminescence polarization memory is enhanced by optical pumping of ground state electron spins, which we prove with the first measurements of the Hanle effect on an individual quantum dot. We use the Overhauser effect in a high longitudinal magnetic field to demonstrate efficient optical pumping of nuclear spins for all three charge states of the quantum dot.  相似文献   

10.
The optical bistability (OB) and multi-stability (OM) behavior in a dielectric slab medium doped with semiconductor quantum well nanostructure has been discussed by employing the spin coherence effect. It is shown that, by changing the relative phase of applied fields the bistable behavior switches from OB to OM or vice versa in a dielectric medium. The effect of the frequency detuning of laser fields on the OB and OM behavior are also discussed in this paper.  相似文献   

11.
李爱仙  段素青  张伟 《中国物理 B》2016,25(10):108506-108506
Hyperfine interaction between electron spin and randomly oriented nuclear spins is a key issue of electron coherence for quantum information/computation. We propose an efficient way to establish high polarization of nuclear spins and reduce the intrinsic nuclear spin fluctuations. Here, we polarize the nuclear spins in semiconductor quantum dot(QD) by the coherent population trapping(CPT) and the electric dipole spin resonance(EDSR) induced by optical fields and ac electric fields. By tuning the optical fields, we can obtain a powerful cooling background based on CPT for nuclear spin polarization. The EDSR can enhance the spin flip–flop rate which may increase the cooling efficiency. With the help of CPT and EDSR, an enhancement of 1300 times of the electron coherence time can be obtained after a 10-ns preparation time.  相似文献   

12.
The time-resolved Hanle effect is examined for negatively charged InGaAs/GaAs quantum dots. Experimental data are analyzed by using an original approach to separate behavior of the longitudinal and transverse components of nuclear polarization. This made it possible to determine the rise and decay times of each component of nuclear polarization and their dependence on transverse magnetic field strength. The rise and decay times of the longitudinal component of nuclear polarization (parallel to the applied field) were found to be almost equal (approximately 5 ms). An analysis of the transverse component of nuclear polarization shows that the corresponding rise and decay times differ widely and strongly depend on magnetic field strength, increasing from a few to tens of milliseconds with an applied field between 20 and 100 mT. Current phenomenological models fail to explain the observed behavior of nuclear polarization. To find an explanation, an adequate theory of spin dynamics should be developed for the nuclear spin system of a quantum dot under conditions of strong quadrupole splitting.  相似文献   

13.
量子点双链中电子自旋极化输运性质   总被引:1,自引:0,他引:1       下载免费PDF全文
安兴涛  穆惠英  咸立芬  刘建军 《物理学报》2012,61(15):157201-157201
利用非平衡格林函数方法, 研究了与单个量子点耦合的量子点双链中电子自旋极化输运性质. 由于系统中Rashba自旋轨道耦合产生的自旋相关的相位, 电子通过上下两种路径时, 自旋不同的电子干涉情况不同, 从而导致了电极中的自旋极化流. 左右两电极间的偏压使单个量子点中的自旋积聚在很大能量区域内能够保持较大的值. 由于系统结构的左右不对称, 正负偏压下自旋积聚情况完全不同. 这些计算结果将有助于实验上设计新型的自旋电子学器件.  相似文献   

14.
We demonstrate the suppression of nuclear-spin fluctuations in an InAs quantum dot and measure the timescales of the spin narrowing effect. By initializing for tens of milliseconds with two continuous wave diode lasers, fluctuations of the nuclear spins are suppressed via the hole-assisted dynamic nuclear polarization feedback mechanism. The fluctuation narrowed state persists in the dark (absent light illumination) for well over 1 s even in the presence of a varying electron charge and spin polarization. Enhancement of the electron spin coherence time (T2*) is directly measured using coherent dark state spectroscopy. By separating the calming of the nuclear spins in time from the spin qubit operations, this method is much simpler than the spin echo coherence recovery or dynamic decoupling schemes.  相似文献   

15.
We measure the dynamics of nuclear spins in a single-electron charged self-assembled InGaAs quantum dot with negligible nuclear spin diffusion due to dipole-dipole interaction and identify two distinct mechanisms responsible for the decay of the Overhauser field. We attribute a temperature-independent decay lasting ~100 sec at 5 T to intradot diffusion induced by hyperfine-mediated indirect nuclear spin interaction. By repeated polarization of the nuclear spins, this diffusion induced partial decay can be suppressed. We also observe a gate voltage and temperature-dependent decay stemming from cotunneling mediated nuclear spin flips that can be prolonged to ~30 h by adjusting the gate voltage and lowering the temperature to ~200 mK. Our measurements indicate possibilities for exploring quantum dynamics of the central spin model.  相似文献   

16.
Using polarization-sensitive photoluminescence and photoluminescence excitation spectroscopy, we study single InAs/GaAs self-assembled quantum dots. The dots were embedded in an n-type, Schottky diode structure allowing for control of the charge state. We present here the exciton, singly charged exciton (positive and negative trions), and the twice negatively charged exciton. For non-resonant excitation below the wetting layer, we observed a large degree of polarization memory from the radiative recombination of both the positive and negative trions. In excitation spectra, through the p-shell, we have found several sharp resonances in the emission from the s-shell recombination of the dot in all charged states. Some of these excitation resonances exhibit strong coulomb shifts upon addition of charges into the quantum dot. One particular resonance of the negatively charged trion was found to exhibit a fine structure doublet under circular polarization. This observation is explained in terms of resonant absorption into the triplet states of the negative trion.  相似文献   

17.
We report a new transport feature in a GaAs lateral double quantum dot that emerges for magnetic-field sweeps and shows hysteresis due to dynamic nuclear spin polarization (DNP). This DNP signal appears in the Coulomb blockade regime by virtue of the finite interdot tunnel coupling and originates from the crossing between ground levels of the spin triplet and singlet extensively used for nuclear spin manipulations in pulsed-gate experiments. The magnetic-field dependence of the current level is suggestive of unbalanced DNP between the two dots, which opens up the possibility of controlling electron and nuclear spin states via dc transport.  相似文献   

18.
By applying a local Rashba spin–orbit interaction to an individual quantum dot of a four-terminal four-quantum-dot ring and introducing a finite bias between the longitudinal terminals, we theoretically investigate the charge and spin currents in the transverse terminals. It is found that when the quantum dot levels are separate from the chemical potentials of the transverse terminals, notable pure spin currents appear in the transverse terminals with the same amplitude but opposite polarization directions. In addition, the polarization directions of such pure spin currents can be inverted by altering the structure parameters, i.e., the magnetic flux, the bias voltage, and the values of quantum dot levels with respect to the chemical potentials of the transverse terminals.  相似文献   

19.
The spectrum and kinetics of the circular polarization of InP quantum dot (QD) photoluminescence have been experimentally investigated under different conditions of optical excitation and at different bias voltages applied to the sample. It is established that, at a bias of about ?0.1 V, the degree of photoluminescence polarization is negative and reaches ?50% in limiting cases. It is concluded that the negative polarization is formed in QDs containing one recident electron per dot and is mainly caused by the optical orientation of the electron spin. It is shown that all experimentally observed regularities are well described in the framework of the model assuming the energy relaxation of photogenerated electron-hole pairs accompanied by the electron- hole spin flip-flop process.  相似文献   

20.
We propose a new mechanism for polarizing nuclear spins in quantum dots, based on periodic modulation of the hyperfine coupling by electric driving at the electron spin resonance frequency. Dynamical nuclear polarization results from resonant excitation rather than hyperfine relaxation mediated by a thermal bath, and thus is not subject to Overhauser-like detailed balance constraints. This allows polarization in the direction opposite to that expected from the Overhauser effect. Competition of the electrically driven and bath-assisted mechanisms can give rise to spatial modulation and sign reversal of polarization on a scale smaller than the electron confinement radius in the dot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号