首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new semiphenomenological model of homogeneous vapor-liquid nucleation is proposed in which the cluster kinetics follows the "kinetic approach to nucleation" and the thermodynamic part is based on the revised Fisher droplet model with the mean-field argument for the cluster configuration integral. The theory is nonperturbative in a cluster size and as such is valid for all clusters down to monomers. It contains two surface tensions: macroscopic (planar) and microscopic. The latter is a temperature dependent quantity related to the vapor compressibility factor at saturation. For Lennard-Jones fluids the microscopic surface tension possesses a universal behavior with the parameters found from the mean-field density functional calculations. The theory is verified against nucleation experiments for argon, nitrogen, water, and mercury, demonstrating very good agreement with experimental data. Classical nucleation theory fails to predict experimental results when a critical cluster becomes small.  相似文献   

2.
A model for isothermal homogeneous nucleation is proposed that improves the classical model. A quasiequilibrium distribution of clusters was calculated on a basis of the Frenkel’-Lothe-Pound theory. The dependence of the free energy of clusters on their size was represented by an interpolation formula relating the free energy of dimers and large clusters to which a notion of macroscopic surface tension is applicable. The nucleation rate and the dependence of the cluster temperature on their size were calculated by balance equations describing the heating of from a cluster due to the condensation of monomers and its cooling due to collisions with an ambient gas. It is shown that the nucleation rate in excess buffer gas is higher than for the pure condensing gas by approximately two orders of magnitude. The model adequately describes the experimental data for the nucleation of methanol supersaturated vapor.  相似文献   

3.
In a solution which is saturated with gas near the superheat limit, one might expect a bubble formed from both dissolved gas and vapor molecules to appear. The integration of the surface-energy concepts, that are postulated on completely different physical bases for gas and vapor bubble formation is a major issue. In this paper, we reformulate gas and vapor bubble nucleation by a scaling transformation, which turns the surface energy for the bubble formation from both dissolved gases and vapor molecules to the translational energy of a molecule, (3/2)kBT. With this unified approach, one could estimate the dissolved gas effect on the superheat limit of the liquid. The driving force and the molecular volume are important quantities for determining the number of gas and vapor molecules composed of a critical cluster. This approach, of course, can predict pure gas bubble formation, as well as pure vapor bubble formation, as limiting cases. Also, this approach makes it possible to find that the possible occurrence of gas bubble nucleation by dissolved gases prevents measuring the theoretical superheat limit of water at atmospheric pressure, 300 degrees C.  相似文献   

4.
5.
A molecular dynamics simulation of vapor phase nucleation has been performed with 40,000 Lennard-Jones particles for the target gas and 0-160,000 particles for the carrier gas. Three carrier gas models are adopted, including a soft-core model, a Lennard-Jones model, and a modified Lennard-Jones model in which the attractive interaction can be adjusted. The effect of the carrier-gas pressure is assessed through computing and comparing the rate of nucleation and cluster size distribution. It is found that the effect of the carrier-gas pressure can be strongly dependent on the carrier-gas model. A positive effect (enhancement of the nucleation rate) is found with the soft-core potential model, whereas negligible effect is found with the Lennard-Jones potential model. For the modified Lennard-Jones potential with a weak attractive interaction, the carrier-gas effect is positive. However, the effect is negligible with a stronger attractive interaction between the target and carrier-gas particles. A reason for the negligible effect is that the carrier-gas particles are adsorbed on the cluster surface when the density of target and carrier-gas particles are comparable. When the density of carrier-gas particles are four times that of the target particles, the carrier-gas particles tend to mix with the target particles in the clusters.  相似文献   

6.
7.
In this work, the dynamical nucleation theory (DNT) model using the ab initio based effective fragment potential (EFP) is implemented for evaluating the evaporation rate constant and molecular properties of molecular clusters. Predicting the nucleation rates of aerosol particles in different chemical environments is a key step toward understanding the dynamics of complex aerosol chemistry. Therefore, molecular scale models of nanoclusters are required to understand the macroscopic nucleation process. On the basis of variational transition state theory, DNT provides an efficient approach to predict nucleation kinetics. While most DNT Monte Carlo simulations use analytic potentials to model critical sized clusters, or use ab initio potentials to model very small clusters, the DNTEFP Monte Carlo method presented here can treat up to critical sized clusters using the effective fragment potential (EFP), a rigorous nonempirical intermolecular model potential based on ab initio electronic structure theory calculations, improvable in a systematic manner. The DNTEFP method is applied to study the evaporation rates, energetics, and structure factors of multicomponent clusters containing water and isoprene. The most probable topology of the transition state characterizing the evaporation of one water molecule from a water hexamer at 243 K is predicted to be a conformer that contains six hydrogen bonds, with a topology that corresponds to two water molecules stacked on top of a quadrangular (H(2)O)(4) cluster. For the water hexamer in the presence of isoprene, an increase in the cluster size and a 3-fold increase in the evaporation rate are predicted relative to the reaction in which one water molecule evaporates from a water hexamer cluster.  相似文献   

8.
9.
The stability ofsurfactantless dispersions of surface chemically pure alkanes was studied in the presence and absence of dissolved gas. It was found that simply freezing and thawing a sample of oil and water results in a dispersion. A mechanism based on fingering of the insoluble oil into the aqueous phase, due to local surface tension gradients, followed by separation and nucleation into droplets, is proposed to account for this observation.  相似文献   

10.
We develop a two-component heterogeneous nucleation model that includes exact calculation of the Stauffer-type [D. Stauffer, J. Aerosol Sci. 7, 319 (1976)] steady-state kinetic prefactor using the correct heterogeneous Zeldovich factor for a heterogeneous two-component system. The model, and a simplified version of it, is tested by comparing its predictions to experimental data for water-n-propanol nucleating on silver particles. The model is then applied to water-carbon dioxide system in Martian conditions, which has not been modeled before. Using the ideal mixture assumption, the model shows theoretical possibilities for two-component nucleation adjacent to the initial stages of one-component water nucleation, especially with small water vapor amounts. The numbers of carbon dioxide molecules in the critical cluster are small in the case of large water amounts (up to 300 ppm) in the gas phase, but larger when there is very little water vapor (1 ppm).  相似文献   

11.
Using the simple point charge/extended water model, we performed molecular dynamics simulations of homogeneous vapor-liquid nucleation at various values of temperature T and supersaturation S, from which the nucleation rate J, critical nucleus size n(*), and the cluster formation free energy DeltaG were derived. As well as providing lots of simulation data, the results were compared with theories on homogeneous nucleation, including the classical, semi-phenomenological, and scaled models, but none of these gave a satisfactory explanation for our results. It was found that two main factors made the theories fail: (1) The average cluster structure including the nonspherical shape and the core structure that is not like the bulk liquid and (2) the forward rate which is larger than assumed by the theories by about one order of magnitude. The quantitative evaluation of these factors is left for future investigations.  相似文献   

12.
A formula for the stationary nucleation rate J is proposed and used for analysis of experimental data for the dependence of J on the supersaturation ratio S in isothermal homogeneous nucleation of water droplets in vapors. It is found that the experimental data are described quite successfully by the proposed formula which is based on (i) the Gibbs presentation of the nucleation work in terms of overpressure, (ii) the Girshick-Chiu [J. Chem. Phys. 93, 1273 (1990); 94, 826 (1991)] self-consistency correction to the equilibrium cluster size distribution, and (iii) the Reguera-Rubi [J. Chem. Phys. 115, 7100 (2001)] kinetic accounting of the nucleus translational-rotational motion. The formula, like that of Wolk and Strey [J. Phys. Chem. B 105, 11683 (2001)], could be used as a semiempirical relation describing the J(S) dependence for nucleation in vapors of single-component droplets or crystals of substances with insufficiently well known equations of state.  相似文献   

13.
In this paper we discuss the condensation of sodium vapor and the formation of a sodium aerosol as it occurs in a gas evaporation condensation chamber. A one-dimensional model describing the vapor transport to the vapor/aerosol interface was employed to determine the onset supersaturation, in which we assume the observed location of the interface is coincident with a nucleation rate maximum. We then present and discuss the resulting nucleation onset supersaturation data within the context of nucleation theory based on the liquid droplet model. Nucleation results appear to be consistent with a cesium vapor-to-liquid nucleation study performed in a thermal diffusion cloud chamber.  相似文献   

14.
The molecular approach to heterogeneous nucleation   总被引:2,自引:0,他引:2  
A molecular approach to heterogeneous nucleation has been developed. The expressions for the equilibrium cluster distribution, the reversible work of the cluster formation, and the nucleation rate have been derived. Two separate statements for the work of formation were formulated. If the equilibrium cluster distribution is normalized on the monomer concentration near the substrate surface, the reversible work of formation is expressed by DeltaG(het) (I) = (F(n) (het)-F(n) (hom))-(F(1) (het)-F(1) (hom)) + DeltaG(hom) where F(n) (het) and F(n) (hom) are the Helmholtz free energies of a cluster interacting with a substrate and a cluster not interacting with the substrate, respectively. If the equilibrium cluster distribution is normalized on the monomer concentration far from the substrate surface, the work of cluster formation is given by DeltaG(het) (II) = (F(n) (het)-F(n) (hom)) + DeltaG(hom). The former expression corresponds to the approach of the classical heterogeneous nucleation theory. The cluster partition function appears to be dependent on the location of a virtual plane, which separates the volume, where the interaction of the clusters with the substrate is effective from the one where interaction is negligible. Our Monte Carlo simulations have shown that the dependence is rather weak and thus the location of the plane is not very important. According to the simulations the variation of the plane position in the range from 20 to 50 Angstroms does not lead to a considerable change of the heterogeneous nucleation rate.  相似文献   

15.
A review of recent progress in the kinetics of nucleation is presented. In the conventional approach to the kinetic theory of nucleation, it is necessary to know the free energy of formation of a new-phase particle as a function of its independent variables at least for near-critical particles. Thus the conventional kinetic theory of nucleation is based on the thermodynamics of the process. The thermodynamics of nucleation can be examined by using various approaches, such as the capillarity approximation, density functional theory, and molecular simulation, each of which has its own advantages and drawbacks. Relatively recently a new approach to the kinetics of nucleation was proposed [Ruckenstein E, Nowakowski B. J Colloid Interface Sci 1990;137:583; Nowakowski B, Ruckenstein E. J Chem Phys 1991;94:8487], which is based on molecular interactions and does not employ the traditional thermodynamics, thus avoiding such a controversial notion as the surface tension of tiny clusters involved in nucleation. In the new kinetic theory the rate of emission of molecules by a new-phase particle is determined with the help of a mean first passage time analysis. This time is calculated by solving the single-molecule master equation for the probability distribution function of a surface layer molecule moving in a potential field created by the rest of the cluster. The new theory was developed for both liquid-to-solid and vapor-to-liquid phase transitions. In the former case the single-molecule master equation is the Fokker-Planck equation in the phase space which can be reduced to the Smoluchowski equation owing to the hierarchy of characteristic time scales. In the latter case, the starting master equation is a Fokker-Planck equation for the probability distribution function of a surface layer molecule with respect to both its energy and phase coordinates. Unlike the case of liquid-to-solid nucleation, this Fokker-Planck equation cannot be reduced to the Smoluchowski equation, but the hierarchy of time scales does allow one to reduce it to the Fokker-Plank equation in the energy space. The new theory provides an equation for the critical radius of a new-phase particle which in the limit of large clusters (low supersaturations) yields the Kelvin equation and hence an expression for the macroscopic surface tension. The theory was illustrated with numerical calculations for a molecular pair interaction potential combining the dispersive attraction with the hard-sphere repulsion. The results for the liquid-to-solid nucleation clearly show that at given supersaturation the nucleation rate depends on the cluster structure (for three cluster structures considered-amorphous, fcc, and icosahedral). For both the liquid-to-solid and vapor-to-liquid nucleation, the predictions of the theory are consistent with the results of classical nucleation theory (CNT) in the limit of large critical clusters (low supersaturations). For small critical clusters the new theory provides higher nucleation rates than CNT. This can be accounted for by the fact that CNT uses the macroscopic interfacial tension which presumably overpredicts the surface tension of small clusters, and hence underpredicts nucleation rates.  相似文献   

16.
《Supramolecular Science》1998,5(3-4):239-245
Transmission electron microscopy observation was carried out for nanometric Cr clusters deposited on microgrids at room temperature using plasma–gas-condensation (PGC) method. In order to obtain optimum conditions for monodisperse cluster formation we have studied effects of an Ar gas pressure, an Ar gas flow rate, and a mixing rate of He gas with Ar gas on the size distribution of formed clusters. It has been found that monodisperse clusters with the size rage of 9–13 nm in diameter are producible at a low Ar gas pressure (≤1.3 Torr) and a low Ar gas flow rate (≤600 sccm). The mean cluster size decreases with decreasing Ar gas pressure, while it is not sensitive to the Ar gas flow rate. When He gas is mixed with Ar gas, the mean cluster size further decreases to 6 nm and the cluster beam intensity becomes stronger probably because He gas with the high thermal conductivity enhances supersaturation for cluster nucleation.  相似文献   

17.
The heterogeneous condensation of a Lennard-Jones vapor onto a nanoscale seed particle is studied using molecular dynamics simulations. Measuring the nucleation rate and the height of the free energy barrier using the mean first passage time method shows that the presence of a weakly interacting seed has little effect on the work of forming very small cluster embryos but accelerates the rate by lowering the barrier for larger clusters. We suggest that this results from a competition between the energetic and entropic features of cluster formation in the bulk and at the heterogeneity. As the interaction is increased, the free energy of formation is reduced for all cluster sizes. We also develop a simple phenomenological model of film formation on a small seed that captures the general features of the nucleation process for small heterogeneities. A comparison of our simulation results with the model shows that heterogeneous classical nucleation theory provides a good estimate of the critical size of the film but significantly overestimates the size of the barrier.  相似文献   

18.
Statistical approach to the study of the process of homogeneous nucleation of droplets in the vapor–gas medium in the presence of originally generated growing droplet at free molecular regime of droplet growth after the instantaneous creation of initial vapor supersaturation is proposed. The probability density of the creation of a new droplet in the vicinity of originally generated droplet is found. The mean distance between two neighboring droplets and the relative scatter of this distance are determined. The mean expectation time for the appearance of neighboring droplet estimating the duration of the droplet nucleation stage is found. The average number of droplets in a unit volume of the vapor–gas medium by the end of the droplet nucleation stage is estimated. The results obtained are compared with the predictions of the theory based on the assumption of the homogeneity of metastable phase.  相似文献   

19.
20.
One of the most intriguing problems of heterogeneous crystal nucleation in droplets is its strong enhancement in the contact mode (when the foreign particle is presumably in some kind of contact with the droplet surface) compared to the immersion mode (particle immersed in the droplet). Heterogeneous centers can have different nucleation thresholds when they act in contact or immersion modes. The underlying physical reasons for this enhancement have remained largely unclear. In this paper we present a model for the thermodynamic enhancement of heterogeneous crystal nucleation in the contact mode compared to the immersion one. To determine if and how the surface of a liquid droplet can thermodynamically stimulate its heterogeneous crystallization, we examine crystal nucleation in the immersion and contact modes by deriving and comparing with each other the reversible works of formation of crystal nuclei in these cases. The line tension of a three-phase contact gives rise to additional terms in the formation free energy of a crystal cluster and affects its Wulff (equilibrium) shape. As an illustration, the proposed model is applied to the heterogeneous nucleation of hexagonal ice crystals on generic macroscopic foreign particles in water droplets at T = 253 K. Our results show that the droplet surface does thermodynamically favor the contact mode over the immersion one. Surprisingly, the numerical evaluations suggest that the line tension contribution (from the contact of three water phases (vapor-liquid-crystal)) to this enhancement may be of the same order of magnitude as or even larger than the surface tension contribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号