首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
An international round‐robin test (RRT) was performed to investigate a method to determine the interface location and the layer thickness of multilayer films by secondary ion mass spectrometry (SIMS) depth profiling as a preliminary study to develop a new work item proposal in ISO/TC‐201. Two types of reference materials were used in this RRT. A SiGe alloy (Si52.4Ge47.6) reference film was used to determine the relative sensitivity factors of Si and Ge. A Si/Ge multilayer reference film was used to determine the relative sputtering rates of the Si and Ge layers. The layer thicknesses were measured from the interfaces determined by a 50 atomic percent definition. Seven laboratories from 5 countries participated in this international RRT. The RRT reference expanded uncertainties for Si and Ge layers in a Si/Ge multilayer with similar thicknesses as the reference film were 0.76 and 1.17 nm, respectively. However, those in a thinner Si/Ge multilayer film were slightly larger at 1.04 and 1.59 nm, respectively. Most of the thickness ratios in the 2 Si/Ge multilayer films were consistent with the RRT reference value within their expanded uncertainties.  相似文献   

2.
The so‐called Storing Matter technique allows the matrix effect observed in secondary ion mass spectrometry to be successfully circumvented. We therefore investigate in this work the depth‐profiling capabilities of the Storing Matter technique with a goal of developing protocols for quantitative depth profiles. The effect of the steps involved in the Storing Matter process on the main parameters such as the depth resolution and the dynamic range is studied experimentally and by simulations. A semi‐automated process consisting of the sputter‐deposition process on a rotating collector in the Storing Matter instrument followed by a complete analysis of the collector by secondary ion mass spectrometry is defined. This protocol is applied to depth profile a B implant in Si and a Sn/Zn multilayered sample, and the results are compared with those obtained with conventional secondary ion mass spectrometry. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The synthesis of the entire silyl-germyl sequence of molecules (H(3)Ge)(x)SiH(4)(-)(x) (x = 1-4) has been demonstrated. These include the previously unknown (H(3)Ge)(2)SiH(2), (H(3)Ge)(3)SiH, and (H(3)Ge)(4)Si species as well as the H(3)GeSiH(3) analogue which is obtained in practical high-purity yields as a viable alternative to disilane and digermane for semiconductor applications. The molecules are characterized by FTIR, multinuclear NMR, mass spectrometry, and Rutherford backscattering. The structural, thermochemical, and vibrational properties are studied using density functional theory. A detailed comparison of the experimental and theoretical data is used to corroborate the synthesis of specific molecular structures. The (H(3)Ge)(x)SiH(4)(-)(x) family of compounds described here is not only of intrinsic molecular interest but also provides a unique route to a new class of Si-based semiconductors including epitaxial layers and coherent islands (quantum dots), with Ge-rich stoichiometries SiGe, SiGe(2), SiGe(3), and SiGe(4) reflecting the Si/Ge content of the corresponding precursor. The layers grow directly on Si(100) at unprecedented low temperatures of 300-450 degrees C and display homogeneous compositional and strain profiles, low threading defect densities, and atomically planar surfaces circumventing entirely the need for conventional graded compositions or lift-off technologies. The activation energies of all Si-Ge hydride reactions on Si(100) (E(a) approximately 1.5-2.0 eV) indicate high reactivity profiles with respect to H(2) desorption, consistent with the low growth temperatures of the films. The quantum dots are obtained exclusively at higher temperatures (T > 500 degrees C) and represent a new family of Ge-rich compositions with narrow size distribution, defect-free microstructures, and homogeneous, precisely tuned elemental content at the atomic level.  相似文献   

4.
Ground-state structures, vibrational frequencies, HOMO-LUMO energy gap, electron affinities, and cluster mixing energy of binary semiconductor clusters SimGen in the range s = m + n 相似文献   

5.
Synthetic routes for the preparation of Si or Ge nanoclusters as gaseous species, colloids, supported composites, or as unsupported powders are reviewed along with selected characterization data. The optical properties of these and related materials, such as porous Si, are summarized with particular emphasis on photo- or electroluminescence phenomena. Research opportunities related to Si and Ge cluster chemistry are suggested.  相似文献   

6.
The origin of size effects in the thermal conductivity and diffusivity of nanostructural semiconductors was investigated through the establishment of a unified nanothermodynamic model. The contributions of size-dependent heat capacity and cohesive energy as well as the interface scattering effects were considered during the modeling. The results indicate the following: (1) both the thermal conductivity and diffusivity decrease with decreasing nanocrystal sizes (x) of Si and Si/SiGe nanowires, Si thin films and Si/Ge(SiGe) superlattices, and GaAs/AlAs superlattices when x > 20 nm; (2) the heat transport in semiconductor nanocrystals is determined largely by the increase of the surface (interface)/volume ratio; (3) the interface scattering effect predominates in the reduction of thermal conductivity and diffusivity while the intrinsic size effects on average phonon velocity and phonon mean free path are also critical; (4) the quantum size effect plays a crucial role in the enhancement of the thermal conductivity with a decreasing x (<20 nm). These findings provide new insights into the fundamental understanding of high-performance nanostructural semiconductors toward application in optoelectronic and thermoelectric devices.  相似文献   

7.
γ-Ray absorption spectroscopy has been used to accurately determine the Si and Ge content in SiGe alloys. This technique provides a fast, accurate, and non-destructive method for determining concentrations of components in binary systems. This work supported by the U. S. Atomic Energy Commission.  相似文献   

8.
The Ge/Si(100)2 × 1 interface was investigated by means of Auger electron spectroscopy, low‐energy electron diffraction, thermal desorption spectroscopy, and work function measurements, in the regime of a few monolayers. The results show that growth of Ge at room temperature forms a thermally stable amorphous interface without significant intermixing and interdiffusion into the substrate, for annealing up to ~1100 K. Therefore, the Ge‐Si interaction most likely takes place at the outmost silicon atomic plane. The charge transfer between Ge and Si seems to be negligible, indicating a rather covalent bonding. Regarding the Ge overlayer morphology, the growth mode depends on the substrate temperature during deposition, in accordance with the literature. Stronger annealing of the germanium covered substrate (>1100 K) causes desorption of not only Ge adatoms, but also SiGe and Ge2 species. This is probably due to a thermal Ge‐Si interdiffusion. In that case, deeper silicon planes participate in the Ge‐Si interaction. Above 1200 K, a new Ge superstructure (4 × 4)R45o was observed. Based on that symmetry, an atomic model is proposed, where Ge adatom pairs interact with free silicon dangling bonds.  相似文献   

9.
GeK edge EXAFS (Extended X-Ray Absorption Fine Structure) spectra have been measured for multilayer semiconducting heterosystems containing interacted groups of quantum dots (“molecules from quantum dots”) ordered in rings on different stages of their growth depending on topologic parameters and growth conditions. In accordance with our results obtained previously for the quantum dots of SiGe, for the molecules of quantum dots it was found that deformation at the interface leads to decrease in the interatomic distance of Ge–Ge by ~0.03 Å. Effect of heterosystem topology and temperature at different stages of their growth on interlayer diffusion was investigated. It was found that at the first growth stage (growth of “seeded islands” serving as a basis for obtaining the molecules) at 700°C a concentration of Ge atoms in the system is ~38%. With further growth of the vertically-matched quantum dots groups the concentration of Ge increases up to ~43-47% depending on the growth conditions. Comparable analysis of different modes of EXAFS measurements was performed to determine precisely structural parameters of heterosystem SiGe with different thickness grown on Si(100) surface.  相似文献   

10.
Crystalline silicon(Si)/germanium(Ge) alloy nanotubes and hollow particles are synthesized for the first time through a one‐pot electrolytic process. The morphology of these alloy structures can be easily tailored from nanotubes to hollow particles by varying the overpotential during the electro‐reduction reaction. The continuous solid diffusion governed by the nanoscale Kirkendall effect results in the formation of inner void in the alloy particles. Benefitting from the compositional and structural advantages, these SiGe alloy nanotubes exhibit much enhanced lithium‐storage performance compared with the individual solid Si and Ge nanowires as the anode material for lithium‐ion batteries.  相似文献   

11.
The effect of boron incorporation during chemical vapor deposition of SiGe thin films from silane, germane, diborane, and hydrogen gas mixtures is investigated. It is shown that boron incorporation during SiGe thin-film growth degrades the Ge profile under certain growth conditions when the boron concentration is high enough (>1019 cm−3). In single-wafer atmospheric-pressure processes we find that no Ge concentration depression occurs at deposition temperatures above 675 °C. In multi-wafer atmospheric-pressure processes we find an increasingly occurring depression of the Ge concentration along the wafer stack, even at temperatures above 675 °C. In low-pressure processes, high-level in-situ doping of SiGe with boron is possible at temperatures as low as 550 °C without any degradation of the Ge profile. Thus LPCVD is superior to APCVD with respect to high-level in situ doping of SiGe with boron. The presence or absence of Ge profile degradation in boron-doped SiGe thin films is explained by the discussion of growth rate enhancement phenomena. Received: 15 September 1997 / Accepted: 7 November 1997  相似文献   

12.
A semiempirical nearest‐neighbor tight‐binding approach, that reproduces the indirect band gaps of elemental semiconductors, has been applied to study the electronic and optical properties of Si and Ge nanowires (NWs). The calculations show that Si‐NWs keep the indirect bandgap whereas Ge‐NWs changes into the direct bandgap when the wire cross section becomes smaller. Also, the band gap enhancement of Si‐NWs showing to quantum confinement effects is generally larger than that of similar‐sized Ge‐NWs, confirming the larger quantum confinement effects in Si than in Ge when they are confined in two dimensions. Finally, the dependence of the imaginary part of the dielectric function on the quantum confinement within two different schemes: intra‐atomic and interatomic optical matrix elements are applied. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem 110:2448–2454, 2010  相似文献   

13.
Titanosilicates with complete or partial substitution of Ge or Nb in the framework and having the mineral pharmacosiderite topology were hydrothermally prepared and their ion-exchange properties towards Cs were studied for Ti/Ge/Si, Ti/Si, Nb/Ti/Si and pure Ge phases. The basis for the differences in the ion exchange properties measured as distribution coefficients (Kd) for these materials are detailed via structural characterization using the Rietveld refinement technique on the X-ray powder diffraction data. The differences in affinity towards Cs+ result either from the degree of hydration of the exchanger resulting in different coordination environments or the position of cesium ion in the eight-ring channel.  相似文献   

14.
The cleavages of some new optically active complexes containing CoSi (orGe), MnSi (orGe), ReGe and WGe bonds are described. Electrophiles cleave the CoSi bond with good retention of configuration at silicon, while the MnSi bond is not cleaved under the same conditions. The M′Si and M′Ge bonds (where M'  transition metal) are cleaved by nucleophiles with retention or inversion of configuration. In the case of triginal bipyramidal geometry (cobalt complexes) the stereochemical outcome of the reaction is strongly dependent upon electronic effects, the size of the ligand trans to the CoSi (orGe) bond, and the nature of the nucleophilic reagant, in accord with the general rules for nucleophilic substitution at silicon. In contrast the transition metalsilicon orgermanium bonds in the octahedral complexes of manganese, rhenium and tungsten are always cleaved with poor retention of configuration regardless of the nature of the ligands or the nucleophilic reagent. The results provide the first cases in which the stereochemistry of nucleophilic displacement at silicon is independent of the electronic features of both the leaving group and the nucleophile.  相似文献   

15.
The structure/bonding relationship in a series of intermetallic phases of Li with Al, Ga, and In was investigated by density functional theory and complemented by a model based on tight-binding theory and the method of moments. The combination of these two approaches provides a simple scheme which allows for both a comprehensive understanding of structural trends and the ability to predict low-energy structures for a given composition. This analysis gives a straightforward picture of phase stability in terms of local geometric features such as triangular, square, and hexagonal arrangements of atoms. The approach was extended to examine the structural properties of metal-doped clathrate compounds of C, Si, Ge, and Sn. Clathrate-type phases based on the frameworks Si172, Ge172, Si40, and Ge40 are not only likely to be energetically favorable but may also exhibit high thermoelectric efficiency.  相似文献   

16.
Zhao Z  Cammidge AN  Hughes DL  Cook MJ 《Organic letters》2010,12(22):5138-5141
Defined face-to-face structures of phthalocyanine and porphyrin chromophores can be prepared using a modular strategy that allows directional, stepwise construction. μ-Oxo linkage between the central group of 14 metalloid atoms Si and Ge ensures π-overlap between the macrocycles, and exciton coupling effects further extend the absorption profile to provide arrays that absorb across the whole UV-visible spectrum and into the near-IR. The strategy is sufficiently versatile to be extended to synthesis of higher defined oligomers and subsequent functionalization or attachment at either or both ends of the stack.  相似文献   

17.
The germanium concentration and the position and thickness of the quantum well in molecular beam epitaxy (MBE)-grown SiGe were quantitatively analyzed via low-energy Rutherford backscattering (RBS) and secondary ion mass spectrometry (SIMS). In these samples, the concentrations of Si and Ge were assumed to be constant, except for the quantum well, where the germanium concentration was lower. The thickness of the analyzed quantum well was about 12 nm and it was situated at a depth of about 60 nm below the surface. A dip showed up in the RBS spectra due to the lower germanium concentration in the quantum well, and this was evaluated. Good depth resolution was required in order to obtain quantitative results, and this was obtained by choosing a primary energy of 500 keV and a tilt angle of 51° with respect to the surface normal. Quantitative information was deduced from the raw data by comparing it with SIMNRA simulated spectra. The SIMS measurements were performed with oxygen primary ions. Given the response function of the SIMS instrument (the SIMS depth profile of the germanium delta (δ) layer), and using the forward convolution (point-to-point convolution) model, it is possible to determine the germanium concentration and the thickness of the analyzed quantum well from the raw SIMS data. The aim of this work was to compare the results obtained via RBS and SIMS and to show their potential for use in the semiconductor and microelectronics industry. The detection of trace elements (here the doping element antimony) that could not be evaluated with RBS in low-energy mode is also demonstrated using SIMS instead.  相似文献   

18.
The interdiffusion in a low-strained Si0.93Ge0.07/Si epilayer was analyzed by double-crystal X-ray diffraction. The interdiffusion was characterized by a low diffusion barrier of 1.81 eV with a diffusion constant of 4.3 × 10−5 cm2/sec, which indicates correlation with the stacking fault generated by the homoepitaxial growth of the Si layer prior to the growth of the strained SiGe layer. At the very low-strained layer, the driving force causing the interdiffusion is the concentration gradient, and the mechanism is self-diffusion of Si. Furthermore, the interdiffusion mechanisms were classified into three groups, depending on the Ge mole fraction x. For x < 0.2, the diffusion process in the SiGe alloy is similar to a self-diffusion of Si atoms, while, for 0.2 < x < 0.4, Ge atoms prefer to be diffused out from the alloy. Finally, for x > 0.4, Si atoms can be diffused into the alloy. Received: 22 April 1997 / Accepted: 4 June 1997  相似文献   

19.
The synthesis, characterization, and growth rates of aluminum- and germanium,aluminum-substituted silicalite-1 (Al-silicalite-1, Ge,Al-silicalite-1) materials grown from clear solutions are reported. In the case of aluminum substitution, the crystallinity of the materials as determined by powder X-ray diffraction (PXRD) decreases with increasing aluminum content, as does the micropore volume determined by nitrogen adsorption and the growth rate determined by in situ small-angle X-ray scattering (SAXS). The final materials possess slightly lower Si/Al ratios than the initial synthesis mixtures based on X-ray fluorescence analysis. In the case of simultaneous incorporation of germanium and aluminum, the final materials have a slightly lower Si/Al ratio than the synthesis mixture but a much higher Si/Ge ratio, indicating the aluminum is more readily incorporated in the zeolite as compared to germanium. This result is consistent with studies of individual heteroatom substitution behavior. Germanium incorporation in the final material increases at higher heteroatom contents (Si/(Ge+Al) = 50 and 25). The promoting effect of germanium on the growth rate of silicalite-1 dominates at low heteroatom content (Si/(Ge+Al) = 100), leading to enhanced zeolite growth rates as compared to pure silicalite-1. This promoting effect is insensitive to the Ge/Al ratio at a Si/(Ge+Al) = 100. The influence of aluminum on the growth rate, as well as the crystallinity of final materials, becomes observable when the heteroatom content is increased (Si/(Ge+Al) = 50 and 25). This is the first study we are aware of that reports the synthesis of Ge,Al-substituted silicalite-1 phases formed in hydroxide media or from clear solutions and has implications for the synthesis of nanoparticulate zeolitic materials for catalysis.  相似文献   

20.
ITQ-21 has been synthesized in a wide range of compositions. By rationally modifying the synthesis variables and zeolite composition, it is possible to fine-tune the crystallite size from nanocrystals (<80 nm) up to microns and to avoid the competition of other phases such as CIT-5, SSZ-24, or a laminar phase that can also be synthesized with the same organic structure directing agent. By means of XRD and (19)F MAS NMR, Ge and Si have been localized among the different crystallographic positions, and it is shown that Ge preferentially occupies T1 positions at the D4R cages, avoiding formation of Ge-O-Ge pairs. However, at high Ge loadings (Si/Ge = 1.7), a new (19)F MAS NMR signal at -14 ppm has been observed and assigned to the presence of Ge-O-Ge in Ge-rich D4R cages. Energetic configurations obtained by theoretical calculations fully agree with experimental observations, with the following increasing order in energy for Ge substitution: T1 < T2 < Ge-O-Ge in T1 < T3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号