首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of two equivalents of the functional phosphine ligand N-(diphenylphosphino)-1,3,4-thiadiazol-2-amine Ph2PNHC=NNCHS (2) with [PdCl2(NCPh)2] in the presence of NEt3 gives the neutral, P,N-chelated complex cis-[Pd(Ph2PN=CNN=CHS)2] ([Pd(2-H)2], 3b), which is analogous to the Pt(II) analogue cis-[Pt (Ph2PN=CNN=CHS)2] ([Pt(2-H)2], 3a) reported previously. These complexes function as chelating metalloligands when further coordinated to a metal through each of the CH-N atoms. In the resulting complexes, each endo-cyclic N donor of the thiadiazole rings is bonded to a different metal centre. Thus, the heterodinuclear palladium/platinum complexes cis-[Pt(Ph2PN=CNN=CHS)2PdCl2]([Pt(2-H)2·PdCl2], 4a) and cis-[Pd(Ph2PN=CNN=CHS)2PtCl2]([Pd(2-H)2·PtCl2], 4b) were obtained by reaction with [PdCl2(NCPh)2] and [PtCl2(NCPh)2], respectively. In contrast, reaction of 3a with [AuCl(tht)] occurred instead at the P-bound N atom, and afforded the platinum/digold complex cis-[Pt{Ph2PN(AuCl)=CNN=CHS}2] ([Pt(2-H)2(AuCl)2], 5). For comparison, reaction of 4a with HBF4 yielded cis-[Pt(Ph2PNH=CNN=CHS)2PdCl2](BF4)2([H24a](BF4)2, 6), in which the chelated PdCl2 moiety is retained. Complexes 3b, 4a·CH2Cl2, 4b·0.5C7H8, 5·4CHCl3 and 6 have been structurally characterized by X-ray diffraction.  相似文献   

2.
Platinum(II) and palladium(II) complexes of the trithiacrown [9]aneS(3) containing a range of Group 15 donors are reviewed. These complexes have the general formula [M([9]aneS(3))(L(2))](n+) where L represents at least one Group 15 donor. Complexes involving pnictogens, with the exception of bismuth, are observed. The complexes generally have an elongated square pyramidal geometry with a long distance interaction to the third sulphur of the [9]aneS(3) which forms the apex of the square pyramid. This axial metal-sulphur distance is quite sensitive to the donor properties of L. Poorer donors such as Sb and As ligands show short axial distances whereas the better N donor ligands show longer distances. Pt(II) complexes of the formula [Pt([9]aneS(3))(EPh(3))(2)](2+) (E = P, As, Sb) show a considerable distortion towards a trigonal bipyramidal geometry due to intramolecular π-π interactions. Over seventy of these types of complexes have been crystallographically characterized and are discussed in this article. Other unique features of the complexes, including NMR spectroscopy, redox chemistry, and electronic spectroscopy, are also discussed.  相似文献   

3.
The half-sandwich complexes [(eta5-C5H5)RuCl(DPEphos)] (1) and [{(eta6-p-cymene)RuCl2}2(mu-DPEphos)] (2) were synthesized by the reaction of bis(2-(diphenylphosphino)phenyl) ether (DPEphos) with a mixture of ruthenium trichloride trihydrate and cyclopentadiene and with [(eta6-p-cymene)RuCl2]2, respectively. Treatment of DPEphos with cis-[RuCl2(dmso)4] afforded fac-[RuCl2(kappa3-P,O,P-DPEphos)(dmso)] (3). The dmso ligand in 3 can be substituted by pyridine, 2,2'-bipyridine, 4,4'-bipyridine, and PPh3 to yield trans,cis-[RuCl2(DPEphos)(C5H5N)2] (4), cis,cis-[RuCl2(DPEphos)(2,2'-bipyridine)] (5), trans,cis-[RuCl2(DPEphos)(mu-4,4'-bipyridine)]n (6), and mer,trans-[RuCl2(kappa3-P,P,O-DPEphos)(PPh3)] (7), respectively. Refluxing [(eta6-p-cymene)RuCl2]2 with DPEphos in moist acetonitrile leads to the elimination of the p-cymene group and the formation of the octahedral complex cis,cis-[RuCl2(DPEphos)(H2O)(CH3CN)] (8). The structures of the complexes 1-5, 7, and 8 are confirmed by X-ray crystallography. The catalytic activity of these complexes for the hydrogenation of styrene is studied.  相似文献   

4.
5.
The reaction of AgOTf in dichloromethane with bis(2-(diphenylphosphino)phenyl) ether (DPEphos) in an equimolar ratio afforded a dinuclear complex [Ag22-P,P′-DPEphos)2(μ-OTf)2] (1), whereas the similar reaction in a 1:2 molar ratio resulted in the formation of a bis-chelating complex [Ag(κ2-P,P′-DPEphos)2][OTf] (2). The silver(I) complex 1 was obtained as a dimer, in which two silver atoms are bridged by two triflate groups to form three adjacent eight-membered spirocyclic rings. The mixed-ligand complex [Ag(κ2-P,P′-DPEphos)(2,2′-bpy)][OTf] (3) was obtained in the reaction of 1 in dichloromethane with 2,2′-bipyridine. The crystal structures of complexes 13 were determined by single crystal X-ray analyses.  相似文献   

6.
The coordination chemistry of the bidentate P,N hybrid ligand 2-(2'-pyridyl)-4,6-diphenylphosphinine (1) towards Pd(II) and Pt(II) has been investigated. The molecular structures of the complexes [PdCl(2)(1)] and [PtCl(2)(1)] were determined by X-ray diffraction, representing the first crystallographically characterized λ(3)-phosphinine-Pd(II) and -Pt(II) complexes. Both complexes reacted with methanol at the P=C double bond at an elevated temperature, leading to the corresponding products [MCl(2)(1H·OCH(3))]. The molecular structure of [PdCl(2)(1H·OCH(3))] was determined crystallographically and revealed that the reaction with methanol proceeds selectively by syn addition and exclusively to one of the P=C double bonds. Strikingly, the reaction of [PdCl(2)(1H·OCH(3))] with the chelating diphosphine DPEphos at room temperature in CH(2)Cl(2) led quantitatively to [PdCl(2)(DPEphos)] and phosphinine 1 by elimination of CH(3)OH and rearomatization of the phosphorus heterocycle.  相似文献   

7.
Methods were developed for selective synthesis of geometric isomers of Pt(II) and Pd(II) complexes with (2-bromo-1-phenylvinyl)diphenylphosphine and tris(Z-styryl)phosphine.__________Translated from Zhurnal Obshchei Khimii, Vol. 75, No. 5, 2005, pp. 734–737.Original Russian Text Copyright © 2005 by Reznikov, Savin, Krivchun, Skvortsov, Sukhov, Malysheva.  相似文献   

8.
[MLCl2]?·?zH2O?·?C2H5OH (L?=?2-[(1H-benzimidazol-2-ylmethyl)-amino]-benzoic acid methyl ester; M?=?Pd, z?=?2; M?=?Pt, z?=?0) complexes were synthesized as potential antitumor compounds and their structures were elucidated by elemental analysis and spectroscopic data. Theoretical molecular structures were investigated by the DFT/B3LYP method using the LANL2DZ basis set. The calculated molecular parameters, bond distances, and angles, revealed a square-planar geometry around the metal through pyridine-type nitrogen (Npy) of benzimidazole and the secondary amino group (NHsec). The lone pair interaction LP(2)O48 of ethanol with anti-bonding σ*(C(16)–H(29)) is an evidence for charge transfer from ethanol to platinum. The electronic movement and assignment of electronic spectra were carried out by TD-DFT calculations. The ligand in comparison to its metal complexes was screened for antibacterial activity and cytotoxicity.  相似文献   

9.
We report the synthesis and full characterization for a series of cyclometallated complexes of Pt(II) and Pd(II) incorporating the fluxional trithiacrown ligand 1,4,7-trithiacyclononane ([9]aneS3). Reaction of [M(C insertion mark N)(micro-Cl)]2 (M = Pt(II), Pd(II); C insertion mark N = 2-phenylpyridinate (ppy) or 7,8-benzoquinolinate (bzq)) with [9]aneS3 followed by metathesis with NH4PF6 yields [M(C insertion mark N)([9]aneS3)](PF6). The complexes [M(C insertion mark P)([9]aneS3)](PF6) (M = Pt(II), Pd(II); Cinsertion markP = [CH2C6H4P(o-tolyl)2-C,P]-) were synthesized from their respective [Pt(C insertion mark P)(micro-Cl)]2 or [Pd(C insertion mark P)(micro-O2CCH3)]2 (C insertion mark P) starting materials. All five new complexes have been fully characterized by multinuclear NMR, IR and UV-Vis spectroscopies in addition to elemental analysis, cyclic voltammetry, and single-crystal structural determinations. As expected, the coordinated [9]aneS3 ligand shows fluxional behavior in its NMR spectra, resulting in a single 13C NMR resonance despite the asymmetric coordination environment of the cyclometallating ligand. Electrochemical studies reveal irreversible one-electron metal-centered oxidations for all Pt(II) complexes, but unusual two-electron reversible oxidations for the Pd(II) complexes of ppy and bzq. The X-ray crystal structures of each complex indicate an axial M-S interaction formed by the endodentate conformation of the [9]aneS3 ligand. The structure of [Pd(bzq)([9]aneS3)](PF6) exhibits disorder in the [9]aneS3 conformation indicating a rare exodentate conformation as the major contributor in the solid-state structure. DFT calculations on [Pt([9]aneS3)(ppy)](PF6) and [Pd([9]aneS3)(ppy)](PF6) indicate the HOMO for both complexes is primarily dz2 in character with a significant contribution from the phenyl ring of the ppy ligand and p orbital of the axial sulfur donor. In contrast, the calculated LUMO is primarily ppy pi* in character for [Pt([9]aneS3)(ppy)](PF6), but dx2-y2 in character for [Pd([9]aneS3)(ppy)](PF6).  相似文献   

10.
车迅  宋果男  李同信 《化学学报》1989,47(10):962-966
本工作合成了下述金属配合物: MCl2L2(M=Pd, Pt), NiX2L2(X=Cl, Br, I),L=PPh3-x(C5H9)x(x=0-3), 并研究了它们的远红外光谱和某些低频Raman光谱, 对某些M-P, M-X振动谱带做出了归属, 并提供结构信息。  相似文献   

11.
Uridine (and thymidine) undergo proton loss at N3 and coordinate as anions to displace all water molecules from dienPd(OH2)2+, dienPt(OH2)2+, enPd(OH2)22+ and enPt(OH2)22+ to form fully substituted complexes in neutral solutions. Though favored at equilibrium at low pH, the reactions of the ligands with the Pt(II) complexes proceed slowly because of the sluggishness of Pt(II) substitutions and the small fractions of ligands with pKa from 9.3 to 9.8 in the anionic basic form. Both dienPd(OH2)2+ and dienPt(OH2)2+ form two mononuclear complexes with the metal ion at N1 and N7 of adenosine and a binuclear complex with metal ions at both sites. In the mononuclear complexes dienPd(II) favors N1 over N7 coordination by 5 to 1 while dienPt(II) is nearly equally distributed between the two sites when reacting with a neutral adenosine molecule.  相似文献   

12.
The five-coordinate palladium(II) and platinum(II) complexes [M(PP(3))Cl]Cl [M = Pd (1), Pt (2)] (PP(3) = tris[2-(diphenylphosphino)ethyl]phosphine) were prepared by interaction of aqueous solutions of MCl(4)(2-) salts with PP(3) in CHCl(3). Complexes 1 and 2 undergo facile chloro substitution reactions with KCN in 1:1 and 1:2 ratios to afford complexes [M(PP(3))(CN)]Cl [M = Pt (3)] and [M(PP(3))(CN)](CN) [M = Pd (4), Pt (5)] possessing M-C bonds, both in solution and in the solid state. The reaction of 1 and 2 with SnCl(2) in CDCl(3) occurs with insertion of SnCl(2) into M-Cl bonds leading to the formation of [M(PP(3))(SnCl(3))](SnCl(3)) [M = Pd (6), M = Pt (7)]. The isolation as solids of complexes 6 and 7 by addition of SnCl(2) to the precursors requires the presence of PPh(3) which activates the cleavage of M-Cl bonds, favors the SnCl(2) insertion, and does not coordinate to M in any observable extent. Solutions of 6 in CDCl(3) undergo tin dichloride elimination in higher proportion than solutions of 7. The reaction of complexes 1 and 2 with SnPh(2)Cl(2) leads to [M(PP(3))Cl](2)[SnPh(2)Cl(4)] [M = Pd (8)]. Complexes 2, 5, 7, and 8 were shown by X-ray diffraction to contain distorted trigonal bipyramidal monocations [M(PP(3))X](+) [M = Pt, X = Cl(-) (2), X = CN(-) (5), X = SnCl(3)(-) (7); M = Pd, X = Cl(-) (8)], the central P atom of PP(3) being trans to X in axial position and the terminal P donors in the equatorial plane of the bipyramids. The "preformed" catalyst 7 showed a relatively high aldehyde selectivity compared to most of the platinum catalysts.  相似文献   

13.
1H NMR spectroscopy, electronic absorption and emission spectroscopy, and cyclic voltammetry were used for comparative study of the complexes [M(ppy)(dpz)]ClO4, [M(ppy)ddpq]ClO4, and [(M(ppy)2(μ-tpbq)](ClO4)2 (M = Pt(II), Pd(II); ppy? = deprotonated 2-phenylpyridine; dpz = 2,3-dipirydylpyrazine, ddpq = 6,7-dimethyl-2,3-dipyridylquinoxaline, tpbq = 2,2′,3,3′-tetrapyridyl-6,6′-biquinoline). The complexes feature trans arrangement of the pyridine moieties of the cyclometalated ppy and polypyridyl (N∧N) ligands. Steric interactions orient the noncoordinated pyridine moiety of the (N∧N) ligands orthogonally to the coordination plane of the complexes. One-electron reduction potentials and parameters of the absorption and luminescence spectra of the complexes were determined. It was shown in terms of the localized molecular orbital model that the LUMOs of the [M(ppy)dpz]+ complexes are primarily localized on the {M(ppy)} metal complex fragment. The presence of low-energy vacant π* orbitals in ddpq and tpbq results in that the LUMOs in the [M(ppy)ddpq] and [(M(ppy)2 μ-tpbq]2+ complexes are localized on the polypyridyl (N∧N) ligand, which is responsible for highly efficient photoexcitation energy transfers [M(ppy)→ddpq]+ and [M(ppy) → (μ-tpbq)←M(ppy)]2+.  相似文献   

14.
Optical yields of up to 60% are obtained in the hydrogenation in water of prochiral compounds in the presence of rhodium complexes of asymmetric water-soluble diphosphines derived from 2-[(diphenylphosphino)methyl]-4-(diphenylphosphino)pyrrolidine.  相似文献   

15.
16.
Reactions of Rh6(CO)16 with bis(diphenylphosphino)methane (dppm) gave Rh6(CO)14(dppm), Rh6(CO)12(dppm)2, or Rh6(CO)10(dppm)3, depending upon the reaction conditions. Rh4(CO)10(dppm) may be obtained from the reaction of Rh4(CO)12 with dppm, but this derivative rapidly decomposes in solution to give Rh4(CO)8(dppm)2, Rh6(CO)14(dppm), and Rh6(CO)12(dppm)2. Ir4(CO)10(dppm) and Ir4(CO)8(dppm)2 have also been prepared, and their structures are discussed on the basis of infrared and 31P NMR spectroscopic data.  相似文献   

17.
New ligand (E)-4-((dimethylamino)methyl)-2-((4,5-dimethylthiazol-2-yl)diazenyl)phenol (HDmazo) was prepared by the coupling reaction between 4,5-dimethylthiazol-2-amine and 4-((dimethylamino)methyl)phenol. Moreover, the [MCl2(HDmazo)] and [M(HDmazo)2] [MII = Pd and Pt] were prepared using the direct reaction of equivalent molar of HDmazo and Na2PdCl4 or K2PtCl4. The HDmazo and its complexes were investigated by different spectroscopic techniques. In complexes (12) HDmazo ligand behaves as bidentate style through the nitrogen of azo group and nitrogen of thiazole ring towards Pd(II) and Pt(II). Or in a bidentate fashion via the oxygen atom of the hydroxylate group and nitrogen atom of azo group as mono-anion in complexes (34). Further, the study of biological activity against four pathogenic bacteria showed that compound (3) exhibited good activity compared to other compounds. Additional the anti-tumor action against A2870 cell lines was screened, and the complexes (1) and (2) displayed good activity with 7.45 ± 0.98 µM and 13.23 ± 1.43 µM, respectively. The binding mechanism of the prepared compounds with EGFR tyrosine kinase, was investigated using molecular docking experiments.  相似文献   

18.
New inclusion complexes and [2]catenanes were self-assembled from a fluorescent diazapyrenium based ligand, a Pd(II) or Pt(II) complex, and cyclic or acyclic electron rich aromatic guests in aqueous and organic media. The molecular rectangles display a π-deficient cavity suitable to incorporate π-donor aromatic systems. The inclusion complexes between the metallocycles and phenylenic () and naphthalenic () derivatives were studied by NMR, UV-vis and fluorescence spectroscopy. The crystal structure of () ? ·6PF(6) confirmed the insertion of the guest into the cavity of the metallocycle. Following the same self-assembly strategy, the use of polyethers , as π-donors resulted in the self-assembly of the [2]catenanes (,)·6PF(6). Single-crystal X-ray analysis of ()·6PF(6) revealed the [2]catenane structure being stabilized by π-stacking and [C-HO] interactions.  相似文献   

19.
The preparations of two new phosphinothiophene ligands, 3,3'-bis(diphenylphosphino)-2,2'-bithiophene (dppbt; 1) and 3,3' "-dihexyl-3',3' '-bis(diphenylphosphino)-2,5':2',2' ':5' ',2' "-quaterthiophene (hdppqt; 2) are reported. Oxidation of 1 gives 3,3'-bis(diphenylphosphine oxide)-2,2'-bithiophene (3), and the crystal structure of this compound was determined. Pd(II) and Au(I) complexes of these ligands have been synthesized and characterized. Crystal structures of [(dppbt)PdCl(2)] (1-Pd), [(hdppqt)PdCl(2)] (2-Pd), [(dppbt)(AuCl)(2)] (1-Au), and [(hdppqt)(AuCl)(2)] (2-Au) were obtained. [(dppbt)(AuCl)(2)] crystallized in two solid-state forms; crystals grown from CH(2)Cl(2)/Et(2)O show a gold-gold interaction of 3.3221(4) A, but from CH(2)Cl(2)/toluene, the molecule crystallizes as a toluene adduct (1-Au-tol) and does not show any gold-gold interaction. All the complexes were characterized via UV-vis spectroscopy and cyclic voltammetry, and the effect of the metal on the energy of the pi-pi transition and oxidation potential was determined. These data are correlated to the interannular torsion angles in the oligothienyl groups from the crystal structure studies.  相似文献   

20.
Cis-[MLCl2] complexes of di-(2-pyridyl)pyrimidin-2-ylsulfanylmethane ligand (L), where M = Pd (1), and M = Pt (2) have been synthesized. Reaction of 1 with L in presence of Na[BF4] and hot acetonitrile produced the complex [PdL2](BF4)2 (3). Complexes 1-3 and ligand L have been characterized by elemental analyses, IR and NMR spectroscopy. Crystal structures of 1, 3 and L were determined by single crystal X-ray diffraction analyses, showing nonplanar structures with the pyridinic rings twisted around the bridging carbon and the ipso carbon bonds. 1 and 3 displayed a bidentate coordination of L to the palladium atom with the formation of six-membered chelate rings, where the local geometry at palladium atom was distorted square planar. In 3 the palladium atom was coordinated to two dipyridyl ligands through two of the pyridinic nitrogen atoms to form a cationic complex stabilized by two tetrafluoroborate counter-ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号