首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the reentrainment of nanosized and microsized particles from rough walls under various electrostatic conditions and various hydrodynamic conditions (either in air or aqueous media) is numerically investigated. This issue arises in the general context of particulate fouling in industrial applications, which involves (among other phenomena) particle deposition and particle reentrainment. The deposition phenomenon has been studied previously and, in the present work, we focus our attention on resuspension. Once particles are deposited on a surface, the balance between hydrodynamic forces (which tend to move particles away from the surface) and adhesion forces (which maintain particles on the surface) can lead to particle removal. Adhesion forces are generally described using van der Waals attractive forces, but the limit of these models is that any dependence of adhesion forces on electrostatic forces (due to variations in pH or ionic strength) cannot be reproduced numerically. For this purpose, we develop a model of adhesion forces that is based on the DLVO (Derjaguin and Landau, Verwey and Overbeek) theory and which includes also the effect of surface roughness through the use of hemispherical asperities on the surface. We first highlight the effect of the curvature radius on adhesion forces. Then some numerical predictions of adhesion forces or adhesion energies are compared to experimental data. Finally, the overall effects of surface roughness and electrostatic forces are demonstrated with some applications of the complete reentrainment model in some simple test cases.  相似文献   

2.
Hematite (α-Fe(2)O(3)) constitutes one of the most promising semiconductor materials for the conversion of sunlight into chemical fuels by water splitting. Its inherent drawbacks related to the long penetration depth of light and poor charge carrier conductivity are being progressively overcome by employing nanostructuring strategies and improved catalysts. However, the physical-chemical mechanisms responsible for the photoelectrochemical performance of this material (J(V) response) are still poorly understood. In the present study we prepared thin film hematite electrodes by atomic layer deposition to study the photoelectrochemical properties of this material under water-splitting conditions. We employed impedance spectroscopy to determine the main steps involved in photocurrent production at different conditions of voltage, light intensity, and electrolyte pH. A general physical model is proposed, which includes the existence of a surface state at the semiconductor/liquid interface where holes accumulate. The strong correlation between the charging of this state with the charge transfer resistance and the photocurrent onset provides new evidence of the accumulation of holes in surface states at the semiconductor/electrolyte interface, which are responsible for water oxidation. The charging of this surface state under illumination is also related to the shift of the measured flat-band potential. These findings demonstrate the utility of impedance spectroscopy in investigations of hematite electrodes to provide key parameters of photoelectrodes with a relatively simple measurement.  相似文献   

3.
Using molecular dynamics simulations, we show that dodecane films confined between amorphous surfaces at 300 K retain liquid-like behavior down to film thicknesses of at least 1.8 nm and possibly smaller. This is in stark contrast to the behavior of films confined between crystalline surfaces which show an abrupt transition to a very high viscosity state at a film thickness of 4 nm. We show that it is the small increase in surface roughness in going from crystalline to amorphous walls, rather than the in-plane disorder, that is responsible for disrupting the crystalline bridges found in the crystal-confined films. The main consequences of the in-plane disorder are the removal of the orientational pinning of the local domain alignment and the reduction of the critical thickness at which the transition to film rigidity appears.  相似文献   

4.
This paper reports the development and testing of atomistic models of silica MCM-41 pores. Model A is a regular cylindrical pore having a constant section. Model B has a surface disorder that reproduces the morphological features of a pore obtained from an on-lattice simulation that mimics the synthesis process of MCM-41 materials. Both models are generated using a similar procedure, which consists of carving the pore out of an atomistic silica block. The differences between the two models are analyzed in terms of small angle neutron scattering spectra as well as adsorption isotherms and isosteric heat curves for Ar at 87 K and Xe at 195 K. As expected for capillary condensation in regular nanopores, the Ar and Xe adsorption/desorption cycles for model A exhibit a large hysteresis loop having a symmetrical shape, i.e., with parallel adsorption and desorption branches. The features of the adsorption isotherms for model B strongly depart from those observed for model A. Both the Ar and Xe adsorption branches for model B correspond to a quasicontinuous pore filling that involves coexistence within the pore of liquid bridges and gas nanobubbles. As in the case of model A, the Ar adsorption isotherm for model B exhibits a significant hysteresis loop; however, the shape of the loop is asymmetrical with a desorption branch much steeper than the adsorption branch. In contrast, the adsorption/desorption cycle for Xe in model B is quasicontinuous and quasireversible. Comparison with adsorption and neutron scattering experiments suggests that model B is too rough at the molecular scale but reproduces reasonably the surface disorder of real MCM-41 at larger length scales. In contrast, model A is smooth at small length scales in agreement with experiments but seems to be too ordered at larger length scales.  相似文献   

5.
Experimental investigation of the effect of carbon particle size on its deposition efficiency on the surface of plastic particles has been performed in stirred vessel. A model based on Langmuir kinetics was used, and it provided a good fit for the experimental results. The effect of de-inking conditions such as, carbon particle size, calcium chloride concentration, and carbon concentration has been investigated.

Different sizes of carbon particles were tested. It was found that the deposition rate and the deposition efficiency were generally higher for the larger carbon particles.

The effect of CaCl2 concentration on the deposition efficiency was investigated. Results showed that the deposition rate increased when the concentration of CaCl2 increased from 0.05 to 0.10 g/l (the stochiometric ratio needed to react with sodium stearate). Moreover, the deposition efficiency was higher at this concentration. Concentrations above the stochiometric ratio did not show a systematic behavior for the deposition rate and the deposition efficiency.

Finally, the effect of carbon concentration was examined. Carbon concentration of 0.25, 0.30, and 0.40 g/l were used. Results showed that the concentration of carbon did not affect the deposition efficiency nor the rate of deposition.

This study confirmed the applicability of the method of ink removal from recycled waste paper using plastic particles, proposed by previous investigators.  相似文献   


6.
Platinum microelectrodes were fabricated on a sapphire substrate by lithographic patterning and used to manipulate 1.58 microm silica particles in the plane of the substrate. A digital video system captured the motion of particles far from the electrodes and their deposition onto the working electrode during application of a DC potential. The role of electrode reversibility was investigated by comparing as-deposited electrodes with electrodes modified by electrolytic plating of platinum. Particles were also observed adhering to the substrate before reaching the electrode. The zeta potential of the particles and substrate was measured. The differing surface chemistry of the two systems and a local reduction in pH due to the production of hydrogen ion at the anode can explain the adhesion phenomena. Force distance curves were recorded using a colloid probe atomic force microscopy technique to directly measure the interaction of the silica particles with the sapphire substrate. These data validated the observed adhesion at the electrode and provided further support for the temporal and spatial reduction in pH. The role of Faradaic processes and the diffusion of potential determining ions in electrophoretic deposition were also considered.  相似文献   

7.
An atomic force microscope (AFM) has been used to quantify the adhesion of living cells Saccharomyces cerevisiae on three different silica surfaces with defined roughness. The effects of support roughness on the adhesion forces of a smooth silica particle were studied in addition. A living single cell was immobilized at the apex of a tipless AFM cantilever using a key-lock mechanism. Adhesion was quantified from the force-distance data measured on a smooth silica substrate and two substrates coated with hydrophilic monodisperse silica particles with 110 and 240 nm in diameter to study the effect of roughness on particle adhesion. The AFM technique gives unique insight into the primary colonization event of biofilm formation. The new knowledge helps substantially to design surface coatings relevant for biotechnology, medicine and dentistry.  相似文献   

8.
In using microscopic imaging techniques, unbiased selection of sampling areas is often critical when judgment has to be used to find regions of interest. A conditional random sampling was designed to survey hematite particles on a mica surface using tapping-mode atomic force microscopy, based on three adapted-systematic-sampling methods designed to exclude subjective bias by limiting the freedom of arbitrarily selecting sampling areas. The results of these surveying methods were compared with the average particle surface density modeled by Poisson distribution. It was found that the conditional random sampling could survey particles effectively and improve the data reliability significantly. Ten population-known images from the same mica sheet were used to evaluate these methods, and an average relative error of 12% (maximum 21%) was obtained using the conditional random method with six sampling areas. It was used to investigate the effects of common organic pollutants, benzene, toluene, ethylbenzene, and xylenes on the transport of soil colloids.  相似文献   

9.
We studied the topographical effect of roughness displayed by a closely packed particle monolayer on formation of a cell monolayer (cell sheet). Particle monolayers were prepared by Langmuir-Blodgett deposition using particles, which were 527nm (SA053) and 1270nm (SA127) in diameter. Human umbilical vein endothelial cells (HUVECs) were seeded at a high density (2.0 x10(5)cells/cm(2)) onto particle monolayers. It was found that cells gradually became into contact with adjacent cells on the SA053 monolayer and the formed cell sheet could be readily detached from the particle monolayer by gentle pipetting. On the other hand, cells adhering onto the tissue culture polystyrene (TCPS) and the SA127 particle monolayer were difficult to peel off. At a low cell seeding density (5.0x10(4)cells/cm(2)), pre-coating with bovine plasma fibronectin (FN) allowed cell growth on an SA053 particle monolayer, and a confluent monolayer was able to be peeled as a cell sheet from the particle monolayer just by pipetting. By immunostaining of human fibronectin, we found that fibronectin was secreted and concentrated onto the substrate side of a cell sheet. The obtained cell sheet adhered and grew on the TCPS again within 20min.  相似文献   

10.
Adsorption of sulfur dioxide on hematite and goethite particle surfaces   总被引:1,自引:0,他引:1  
The adsorption of sulfur dioxide (SO(2)) on iron oxide particle surfaces at 296 K has been investigated using X-ray photoelectron spectroscopy (XPS). A custom-designed XPS ultra-high vacuum chamber was coupled to an environmental reaction chamber so that the effects of adsorbed water and molecular oxygen on the reaction of SO(2) with iron oxide surfaces could be followed at atmospherically relevant pressures. In the absence of H(2)O and O(2), exposure of hematite (alpha-Fe(2)O(3)) and goethite (alpha-FeOOH) to SO(2) resulted predominantly in the formation of adsorbed sulfite (SO(3)(2-)), although evidence for adsorbed sulfate (SO(4)(2-)) was also found. At saturation, the coverage of adsorbed sulfur species was the same on both alpha-Fe(2)O(3) and alpha-FeOOH as determined from the S2p : Fe2p ratio. Equivalent saturation coverages and product ratios of sulfite to sulfate were observed on these oxide surfaces in the presence of water vapor at pressures between 6 and 18 Torr, corresponding to 28 to 85% relative humidity (RH), suggesting that water had no effect on the adsorption of SO(2). In contrast, molecular oxygen substantially influenced the interactions of SO(2) with iron oxide surfaces, albeit to a much larger extent on alpha-Fe(2)O(3) relative to alpha-FeOOH. For alpha-Fe(2)O(3), adsorption of SO(2) in the presence of molecular oxygen resulted in the quantitative formation of SO(4)(2-) with no detectable SO(3)(2-). Furthermore, molecular oxygen significantly enhanced the extent of SO(2) uptake on alpha-Fe(2)O(3), as indicated by the greater than two-fold increase in the S2p : Fe2p ratio. Although SO(2) uptake is still enhanced on alpha-Fe(2)O(3) in the presence of molecular oxygen and water, the enhancement factor decreases with increasing RH. In the case of alpha-FeOOH, there is an increase in the amount of SO(4)(2-) in the presence of molecular oxygen, however, the predominant surface species remained SO(3)(2-) and there is no enhancement in SO(2) uptake as measured by the S2p : Fe2p ratio. A mechanism involving molecular oxygen activation on oxygen vacancy sites is proposed as a possible explanation for the non-photochemical oxidation of sulfur dioxide on iron oxide surfaces. The concentration of these sites depends on the exact environmental conditions of RH.  相似文献   

11.
Application of microorganisms as surface modifiers has focused our attention in recent times. The adsorption of biosurfactants can be a way for the solid surface modification. In the present investigation rhamnolipids produced by Pseudomonas aerugiosa were used to make the hematite surface modification. Experiments were carried out with pure mineral hematite. In this paper, the influence of biosurfactant addition on both the stability and the flotability of hematite suspensions has been studied in detail. The stability experiments were conducted using Turbiscan LAb apparatus, at constant pH conditions and mineral amount. The flotation experiments were carried out using Hallimond tube. The adsorption isotherms of biosurfactant onto the hematite particles were also determined. The experiments were carried out with broth and pure rhamnolipid. The results of those experiments were compared and discussed.  相似文献   

12.
This communication reports that the electron-transfer rate and surface roughness of Au electrodes can be decreased simply by ultrasonic treatment. It seems that the hydroxyl radical generated during ultrasonic treatment plays an important role, as in the case of treatment with Fenton's reagent.  相似文献   

13.
Chemical surface deposition of thin CdSe films was studied. The conditions for preparing thin films were examined, the degrees of Cd conversion in the starting compounds were determined, and the film thicknesses were measured.  相似文献   

14.
In this work, the hematite (Fe2O3) nanoparticles were synthesized by homogeneous precipitation in alcohol (tert-butanol)/water mixed solvents with varied surface tension. The surface tension of the solvent was decreased from 55.8 to 15.9 mN m?1 by the increasing of the alcohol content from 20 to 80 vol %. The size of the particles was determined by BET, XRD and TEM techniques. Based on XRD results, the crystalline phase of Fe2O3 in all samples was attributed to the cubic hematite structure. The results show that the average particle size of the prepared hematite samples is decreased from 38 to 14 nm upon decreasing surface tension from 55.8 to 15.9 mN m?1.  相似文献   

15.
The wetting behavior of solid surfaces can be altered dramatically by introducing surface roughness on the nanometer scale. Some of nature's most fascinating wetting phenomena are associated with surface roughness; they have inspired both fundamental research and the adoption of surface roughness as a design parameter for man-made functional coatings. So far the attention has focused primarily on macroscopic surfaces, but one should expect the wetting properties of colloidal particles to be strongly affected by roughness, too. Particle wettability, in turn, is a key parameter for the adsorption of particles at liquid interfaces and for the industrially important use of particles as emulsion stabilizers; yet, the consequence of particle roughness for emulsion stability remains poorly understood. In order to investigate the matter systematically, we have developed a surface treatment, applicable to micrometer-sized particles and macroscopic surfaces alike, that produces surface coatings with finely tunable nanoscale roughness and identical surface chemistry. Coatings with different degrees of roughness were characterized with regard to their morphology, charging, and wetting properties, and the results were correlated with the stability of emulsions prepared with coated particles of different roughness. We find that the maximum capillary pressure, a metric of the emulsions' resistance to droplet coalescence, varies significantly and in a nonmonotonic fashion with particle roughness. Surface topography and contact angle hysteresis suggest that particle roughness benefits the stability of our emulsions as long as wetting occurs homogeneously (Wenzel regime), whereas the transition toward heterogeneous wetting (Cassie-Baxter regime) is associated with a loss of stability.  相似文献   

16.
Surface roughness occurs in a wide variety of processes where it is both difficult to avoid and control. When two bodies are separated by a small distance the roughness starts to play an important role in the interaction between the bodies, their adhesion, and friction. Control of this short-distance interaction is crucial for micro and nanoelectromechanical devices, microfluidics, and for micro and nanotechnology. An important short-distance interaction is the dispersion forces, which are omnipresent due to their quantum origin. These forces between flat bodies can be described by the Lifshitz theory that takes into account the actual optical properties of interacting materials. However, this theory cannot describe rough bodies. The problem is complicated by the nonadditivity of the dispersion forces. Evaluation of the roughness effect becomes extremely difficult when roughness is comparable with the distance between bodies. In this paper we review the current state of the problem. Introduction for non-experts to physical origin of the dispersion forces is given in the paper. Critical experiments demonstrating the nonadditivity of the forces and strong influence of roughness on the interaction between bodies are reviewed. We also describe existing theoretical approaches to the problem. Recent advances in understanding the role of high asperities on the forces at distances close to contact are emphasized. Finally, some opinions about currently unsolved problems are also presented.  相似文献   

17.
Alumina-grafted materials were prepared by postsynthesis alumination of mesoporous SBA-15 silica in an aqueous solution of aluminum chlorhydrol. Prepared samples were characterized by nitrogen adsorption, scanning electron microscopy, X-ray powder diffraction, and (27)Al magic-angle-spinning NMR. The successive grafting of alumina on SBA-15 leads to a gradual filling of the corona surrounding the mesopores. As a consequence smoothing of the mesopore surface takes place. The in-depth analysis of nitrogen adsorption data proves that the alpha s method affords real values of the structure parameters, while the Kruk, Jaroniec, and Sayari (KJS) procedure based on the BJH algorithm provides only effective data corresponding to cylindrical mesopores of smooth geometrical surface. The quantification of the roughness of the SBA-15 mesopore surface based on the comparison of data obtained from the alpha s plot and KJS method was carried out.  相似文献   

18.
CO adsorbs molecularly on smooth Pd surface and dissociates to a limited extent on small supported Pd particles. CO dissociation on Pd particles were investigated by means of TPD method. Pd particles was deposited on 2 mm thick anodicaly oxidized Al crystals in order to obtain a homogeneous distribution of temperature over Pd surface. It was shown that the size dependent CO dissociation activity of small supported Pd particles is caused by the existence of active sites, such as surface steps, whilst the plane sites are not active.  相似文献   

19.
The effect of surface roughness on the quartz crystal microbalance with dissipation monitoring (QCM-D) response was investigated with emphasis on determining the amount of trapped water. Surfaces with different nanoroughnesses were prepared on silica by self-assembly of cationic surfactants with different packing parameters. We used surfactants with quaternary ammonium bromide headgroups: the double-chained didodecyltrimethylammonium bromide (C12)2DAB (DDAB), the single-chained hexadecyltrimethylammonium bromide C16TAB (CTAB), and dodecyltrimethyl-ammonium bromide C12TAB (DTAB). The amount of trapped water was obtained from the difference between the mass sensed by QCM-D and the adsorbed amount detected by optical reflectometry. The amount of water, which is sensed by QCM-D, was found to increase with the nanoroughness of the adsorbed layer. The water sensed by QCM-D cannot be assigned primarily to hydration water, because it differs substantially for adsorbed surfactant layers with similar headgroups but with different nanoscale topographies.  相似文献   

20.
A device for measuring surface potentials of individual crystal planes was constructed. The surface potentials of the (0 1 2), (1 0 -2), (1 1 3), and (1 1 -3) crystal planes of hematite were measured as a function of pH at different sodium nitrate concentrations. Results of measurement enabled differentiation between the planes, showing agreement with the surface potentials obtained with a single-crystal hematite electrode. At low ionic strength there was no significant difference in potential between the crystal planes, whereas at relatively high ionic strength the difference was noticeable. In the absence of counterion association, but also in the case of their symmetric association taking place, point of zero potential (pH(pzp)) coincides with other zero points, i.e., with the isolectric point (pH(iep)) and the point of zero charge (pH(pzc)). If the counterion affinities toward association are not equal, the pH(pzp) is shifted in the same directions as the pH(pzc). The shift in the point of zero potential to the basic region was more pronounced for the (1 1 -3) plane than for the (1 0 -2) one, indicating a higher affinity of anions for association with oppositely charged surface groups compared to cations. It was demonstrated that measurements of surface potentials of individual crystal planes could help to better understand the equilibrium at solid/liquid interfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号