首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In this article, directional movements of drops on the ratchet-like superhydrophobic surfaces were observed. High-speed CCD images showed the caterpillar-like crawl of a drop on the inclined superhydrophobic surfaces as it rolled along the ridge of ratchet. In contrast, along the opposite direction, the movement of the drop only depended on the end of triple phase contact line while the front of contact line was pinned. The sliding angle (SA) measurements indicated that the ratchet-like superhydrophobic surfaces had directional drop retention traits. Moreover, the reduction of the rise angle ω1, the height d of the ratchet's ridge and the volume V of the drop can greatly enhance the directional difference of drop retention on the ratchet-like superhydrophobic surfaces. Therefore, it was concluded that the superhydrophobicity and the periodic ratchet-like microstructures were the keys to the directional drop sliding at one-dimensional level. We believe that these findings would be helpful to better understand the ratchet-like effect on the superhydrophobic surfaces and guide some novel engineering applications.  相似文献   

3.
Superhydrophobic surfaces have shown inspiring applications in microfluidics, and self-cleaning coatings owing to water-repellent and low-friction properties. However, thermodynamic mechanism responsible for contact angle hysteresis (CAH) and free energy barrier (FEB) have not been understood completely yet. In this work, we propose an intuitional 3-dimension (3D) droplet model along with a reasonable thermodynamic approach to gain a thorough insight into the physical nature of CAH. Based on this model, the relationships between radius of three-phase contact line, change in surface free energy (CFE), average or local FEB and contact angle (CA) are established. Moreover, a thorough theoretical consideration is given to explain the experimental phenomena related to the superhydrophobic behavior. The present study can therefore provide some guidances for the practical fabrications of the superhydrophobic surfaces.  相似文献   

4.
Textured silicon (Si) substrates decorated with regular microscale square pillar arrays of nearly the same side length, height, but different intervals are fabricated by inductively coupled plasma, and then silanized by self-assembly octadecyl- trichlorosilane (OTS) film. The systematic water contact angle (CA) measurements and micro/nanoscale hierarchical rough structure models are used to analyze the wetting behaviors of original and silanized textured Si substrates each as a function of pillar interval-to-width ratio. On the original textured Si substrate with hydrophilic pillars, the water droplet possesses a larger apparent CAs (〉 90~) and contact angle hysteresis (CAH), induced by the hierarchical roughness of microscale pil- lar arrays and nanoscale pit-like roughness. However, the silanized textured substrate shows superhydrophobicity induced by the low free energy OTS overcoat and the hierarchical roughness of microscale pillar arrays, and nanoscale island-like roughness. The largest apparent CA on the superhydrophobic surface is 169.8~. In addition, the wetting transition of a gently deposited water droplet is observed on the original textured substrate with pillar interval-to-width ratio increasing. Furthermore, the wetting state transition is analyzed by thermodynamic approach with the consideration of the CAH effect. The results indicate that the wetting state changed from a Cassie state to a pseudo-Wenzel during the transition.  相似文献   

5.
Hierarchical micrometer-nanometer-scale binary rough structures were fabricated on copper substrates by electrochemical machining in a neutral NaCl electrolyte. The rough structures are composed of the micrometer scale potato-like structures and the nanometer scale cube-like structures. After modified by the fluoroalkylsilane, the copper surfaces reached superhydrophobicity with a water contact angle of 164.3° and a water tilting angle less than 9°. This method has a high processing efficiency which can take just 3 s to fabricate the roughness required by the superhydrophobic surface. The effect of the processing time on wettability of the copper surfaces was investigated in this paper. The possible mechanism of the formation of the hierarchical roughness was also proposed, and the wettability of the copper surfaces was discussed on the basis of the Cassie-Baxter theory.  相似文献   

6.
Superhydrophobic surfaces based on ZnO-PDMS nanocomposite coatings are demonstrated by a simple, facile, time-saving, wet chemical route. ZnO nanopowders with average particle size of 14 nm were synthesized by a low temperature solution combustion method. Powder X-ray diffraction results confirm that the nanopowders exhibit hexagonal wurtzite structure and belong to space group P63mc. Field emission scanning electron micrographs reveal that the nanoparticles are connected to each other to make large network systems consisting of hierarchical structure. The as formed ZnO coating exhibits wetting behaviour with Water Contact Angle (WCA) of ∼108°, however on modification with polydimethylsiloxane (PDMS), it transforms to superhydrophobic surface with measured contact and sliding angles for water at 155° and less than 5° respectively. The surface properties such as surface free energy (γp), interfacial free energy (γpw), and the adhesive work (Wpw) were evaluated. Electron paramagnetic resonance (EPR) studies on superhydrophobic coatings revealed that the surface defects play a major role on the wetting behaviour. Advantages of the present method include the cheap and fluorine-free raw materials, environmentally benign solvents, and feasibility for applying on large area of different substrates.  相似文献   

7.
We demonstrate that the equilibrium shape of the composite interface between superhydrophobic surfaces and drops in the superhydrophobic Cassie state under electrowetting is determined by the balance of the Maxwell stress and the Laplace pressure. Energy barriers due to pinning of contact lines at the edges of the hydrophobic pillars control the transition from the Cassie to the Wenzel state. Barriers due to the narrow gap between adjacent pillars control the lateral propagation of the Wenzel state. We demonstrate how reversible switching between the two wetting states can be achieved locally using suitable surface and electrode geometries.  相似文献   

8.
During evaporation, shape changes of nanoliter-scale (80-100 nL) water droplets were evaluated on two superhydrophobic surfaces with different random roughness (nm-coating, μm-coating). The square of the contact radius and the square of the droplet height decreased linearly with evaporation time. However, trend changes were observed at around 170 s (nm-coating) and around 150 s (μm-coating) suggesting a wetting mode transition. The calculated droplet radii for the wetting mode transition from the average roughness distance and the average roughness height of these surface structures were approximately equal to the experimental values at these trend changes. A certain level of correlation between the roughness size and droplet radius at the wetting mode transition was confirmed on surfaces with random roughness.  相似文献   

9.
10.
Fabrication of superhydrophobic surfaces on aluminum   总被引:4,自引:0,他引:4  
A superhydrophobic surface was prepared on aluminum substrate. Anodization and low-temperature plasma treatment were used to create micro-nano-structure and subsequently trichlorooctadecyl-silane modified the rough surface. The result shows that the water static contact of the aluminum surface after anodization and modification by trichlorooctadecyl-silane reaches to 152.1°. A rougher surface with some micro-nano-pores and small mastoids along the edges of pores was generated when low-temperature plasma treatment was applied to anodized aluminum film, resulting in water static contact angle up to 157.8°.  相似文献   

11.
Stable superhydrophobic surfaces were fabricated on the zinc substrates through simple silver replacement deposition process with the modification of octadecyl mercaptan. The effects of reaction conditions on the surface morphology and wettability of the prepared surfaces were carefully studied. The results show that the fabrication of a best superhydrophobic surface depends largely on the moderate reactant concentration. When the concentration of AgNO3 solution was 2 mmol/L, the zinc substrate was covered by a dendritic outline structure. Aggregated silver nanoparticles were formed on the substrate in accordance with some certain laws, exhibiting great surface roughness. The typical hierarchical micro-nanostructures, flower-like structures and porous structures also could be found from the SEM images. The maximal water contact angle (CA) value of about 161 ± 2°, and the minimal sliding angle (SA) of about 2° were obtained under the same reaction condition.  相似文献   

12.
The expressions of interface free energy(IFE) of composite droplets with meniscal liquid–air interface in metastable state on micro/nano textured surfaces were formulated. Then the parameters to describe the meniscus were determined based on the principle of minimum IFE. Furthermore, the IFE barriers and the necessary and sufficient conditions of drop wetting transition from Cassie to Wenzel were analyzed and the corresponding criteria were formulated. The results show that the liquid–air interface below a composite droplet is flat when the post pitches are relatively small, but in a shape of curved meniscus when the piteches are comparatively large and the curvature depends on structural parameters. The angle between meniscus and pillar wall is just equal to the supplementary angle of intrinsic contact angle of post material. The calculations also illustrate that Cassie droplets will transform to Wenzel state when post pitch is large enough or when drop volume is sufficiently small. The opposite transition from Wenzel to Cassie state, however, is unable to take place spontaneously because the energy barrier is always positive. Finally, the calculation results of this model are well consistent with the experimental observations in literatures for the wetting transition of droplets from Cassie to Wenzel state.  相似文献   

13.
Via a simple wet chemical etching followed by stearic acid modification, the presence of synergistic binary structures at micro- and nanometer scales and stearic acid bestows superhydrophobic property on steel and aluminum alloy surfaces. The as-prepared surfaces show superhydrophobic not only for pure water but also for corrosive liquids such as acid, basic and salt solutions. The stable superhydrophobicity of steel and aluminum alloy surfaces will extend their applications as engineering materials.  相似文献   

14.
The epitaxial growth of graphene on transition metal surfaces by ex situ deposition of liquid precursors (LPD, liquid phase deposition) is compared to the standard method of chemical vapor deposition (CVD). The performance of LPD strongly depends on the particular transition metal surface. For Pt(111), Ir(111) and Rh(111), the formation of a graphene monolayer is hardly affected by the way the precursor is provided. In the case of Ni(111), the growth of graphene strongly depends on the applied synthesis method. For CVD of propene on Ni(111), a 1 × 1 structure as expected from the vanishing lattice mismatch is observed. However, in spite of the nearly perfect lattice match, a multi-domain structure with 1 × 1 and two additional rotated domains is obtained when an oxygen-containing precursor (acetone) is provided ex situ.  相似文献   

15.
Assuming a reemission model, we have studied, in detail, the effect of sticking coefficient on the morphology evolution in low-pressure chemical vapor deposition processes. We have shown that the surface morphology changes from a self-affine fractal to a columnarlike morphology with increasing sticking coefficient, which agrees qualitatively with experimental observations.  相似文献   

16.
17.
When a water droplet on a micropillar-structured hydrophobic surface is submitted to gradually increased pressure, the CassieBaxter wetting state transforms into the Wenzel wetting state once the pressure exceeds a critical value. It has been assumed that the reverse transition(Wenzel-to-Cassie-Baxter wetting state) cannot happen spontaneously after the pressure has been removed.In this paper, we report a new wetting-state transition. When external pressure is exerted on a droplet in the Cassie-Baxter wetting state on textured surfaces with high micropillars to trigger the breakdown of this wetting state, the droplet penetrates the micropillars but does not touch the base of the surface to trigger the occurrence of the Wenzel wetting state. We have named this state the suspended penetration wetting state. Spontaneous recovery from the suspended penetration wetting state to the initial Cassie-Baxter wetting state is achieved when the pressure is removed. Based on the experimental results, we built models to establish the penetration depth that the suspended penetration wetting state could achieve and to understand the energy barrier that influences the equilibrium position of the liquid surface. These results deepen our understanding of wetting states on rough surfaces subjected to external disturbances and shed new light on the design of superhydrophobic materials with a robust wetting stability.  相似文献   

18.
Quantitative correlation between the critical impact velocity of droplet and geometry of superhydrophobic surfaces with microstructures is systematically studied.Experimental data shows that the critical impact velocity induced wetting transition of droplet on the superhydrophobic surfaces is strongly determined by the perimeter of single micropillar,the space between the repeat pillars and the advancing contact angle of the sidewall of the micropillars.The proposed model agrees well with the experimental results,and clarifies that the underlying mechanism which is responsible for the superhydrophobic surface with hierarchical roughness could sustain a higher liquid pressure than the surfaces with microstructures.  相似文献   

19.
The interaction of liquid drops and heated surfaces is of great importance in many applications. This paper describes a numerical method, based on smoothed particle hydrodynamics (SPH), for simulating n-heptane drop impact on a heated surface. The SPH method uses numerical Lagrangian particles, which obey the laws of fluid dynamics, to describe the fluid flows. By incorporating the Peng–Robinson equation of state, the present SPH method can directly simulate both the liquid and vapor phases and the phase change process between them. The numerical method was validated by two experiments on drop impact on heated surfaces at low impact velocities. The numerical method was then used to predict drop-wall interactions at various temperatures and velocities. The model was able to predict the different outcomes, such as rebound, spread, splash, breakup, and the Leidenfrost phenomenon, consistent with the physical understanding.  相似文献   

20.
The dimensional dependence of the angle of solid surface wetting by a small drop on the latter’s size R and radius of the wetting outline r is considered. Numerical values of specific linear energy γ?(r) and line tension σ r (r) of the wetting outline are calculated for a nanometer tin drop-substrate surface-aluminum film system. It is shown that wetting angle θ(R,r) in the drop-substrate surface system increases as the wetting outline’s radius decreases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号