首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We show the exact expression of the quantum mechanical time correlation function in the phase space formulation of quantum mechanics. The trajectory-based dynamics that conserves the quantum canonical distribution-equilibrium Liouville dynamics (ELD) proposed in Paper I is then used to approximately evaluate the exact expression. It gives exact thermal correlation functions (of even nonlinear operators, i.e., nonlinear functions of position or momentum operators) in the classical, high temperature, and harmonic limits. Various methods have been presented for the implementation of ELD. Numerical tests of the ELD approach in the Wigner or Husimi phase space have been made for a harmonic oscillator and two strongly anharmonic model problems, for each potential autocorrelation functions of both linear and nonlinear operators have been calculated. It suggests ELD can be a potentially useful approach for describing quantum effects for complex systems in condense phase.  相似文献   

2.
We show two more approaches for generating trajectory-based dynamics in the phase space formulation of quantum mechanics: "equilibrium continuity dynamics" (ECD) in the spirit of the phase space continuity equation in classical mechanics, and "equilibrium Hamiltonian dynamics" (EHD) in the spirit of the Hamilton equations of motion in classical mechanics. Both ECD and EHD can recover exact thermal correlation functions (of even nonlinear operators, i.e., nonlinear functions of position or momentum operators) in the classical, high temperature, and harmonic limits. Both ECD and EHD conserve the quasi-probability within the infinitesimal volume dx(t)dp(t) around the phase point (x(t), p(t)) along the trajectory. Numerical tests of both approaches in the Wigner phase space have been made for two strongly anharmonic model problems and a double well system, for each potential auto-correlation functions of both linear and nonlinear operators have been calculated. The results suggest EHD and ECD are two additional potential useful approaches for describing quantum effects for complex systems in condense phase.  相似文献   

3.
We develop an approach for dynamical (ω > 0) embedding of mixed quantum mechanical (QM)∕classical (or more precisely QM∕electrodynamics) systems with a quantum sub-region, described by time-dependent density functional theory (TDDFT), within a classical sub-region, modeled here by the recently proposed near-field (NF) method. Both sub-systems are propagated simultaneously and are coupled through a common Coulomb potential. As a first step we implement the method to study the plasmonic response of a metal film which is half jellium-like QM and half classical. The resulting response is in good agreement with both full-scale TDDFT and the purely classical NF method. The embedding method is able to describe the optical response of the whole system while capturing quantum mechanical effects, so it is a promising approach for studying electrodynamics in hybrid molecules-metals nanostructures.  相似文献   

4.
The time‐dependent discrete variable representation (TDDVR) of a wave function with grid points defined by the Hermite part of the Gauss–Hermite (G‐H) basis set introduces quantum corrections to classical mechanics. The grid points in this method follow classical trajectory and the approach converges to the exact quantum formulation with sufficient trajectories (TDDVR points) but just with a single grid point; only classical mechanics performs the dynamics. This newly formulated approach (developed for handling time‐dependent molecular quantum dynamics) has been explored to calculate vibrational transitions in the inelastic scattering processes. Traditional quantum mechanical results exhibit an excellent agreement with TDDVR profiles during the entire propagation when enough grid points are included in the quantum‐classical dynamics. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

5.
In this paper we describe an application of the trajectory-based semiclassical Liouville method for modeling coherent molecular dynamics on multiple electronic surfaces to the treatment of the evolution and decay of quantum electronic coherence in many-body systems. We consider a model representing the coherent evolution of quantum wave packets on two excited electronic surfaces of a diatomic molecule in the gas phase and in rare gas solvent environments, ranging from small clusters to a cryogenic solid. For the gas phase system, the semiclassical trajectory method is shown to reproduce the evolution of the electronic-nuclear coherence nearly quantitatively. The dynamics of decoherence are then investigated for the solvated systems using the semiclassical approach. It is found that, although solvation in general leads to more rapid and extensive loss of quantum coherence, the details of the coupled system-bath dynamics are important, and in some cases the environment can preserve or even enhance quantum coherence beyond that seen in the isolated system.  相似文献   

6.
7.
The quantum reactive flux correlation function is computed for a two-level system using an expression for the quantum equilibrium structure appropriate for strong nonadiabatic coupling, in conjunction with quantum–classical Liouville dynamics. The magnitude of the quantum mechanical enhancement of the reaction rate as a result of strong nonadiabatic coupling is studied. The reaction rate is found to increase strongly with an increase in the nonadiabatic coupling strength as well as with a decrease in the temperature. Equilibrium quantum effects increase the ground-state contribution to the rate constant but these effects decrease the excited-state contribution.  相似文献   

8.
9.
10.
11.
The non-relativistic quantum dynamics of nuclei and electrons is solved within the framework of quantum hydrodynamics using the adiabatic representation of the electronic states. An on-the-fly trajectory-based nonadiabatic molecular dynamics algorithm is derived, which is also able to capture nuclear quantum effects that are missing in the traditional trajectory surface hopping approach based on the independent trajectory approximation. The use of correlated trajectories produces quantum dynamics, which is in principle exact and computationally very efficient. The method is first tested on a series of model potentials and then applied to study the molecular collision of H with H(2) using on-the-fly TDDFT potential energy surfaces and nonadiabatic coupling vectors.  相似文献   

12.
The paper describes the quantized Hamilton dynamics (QHD) approach that extends classical Hamiltonian dynamics and captures quantum effects, such as zero point energy, tunneling, decoherence, branching, and state-specific dynamics. The approximations are made by closures of the hierarchy of Heisenberg equations for quantum observables with the higher order observables decomposed into products of the lower order ones. The technique is applied to the vibrational energy exchange in a water molecule, the tunneling escape from a metastable state, the double-slit interference, the population transfer, dephasing and vibrational coherence transfer in a two-level system coupled to a phonon, and the scattering of a light particle off a surface phonon, where QHD is coupled to quantum mechanics in the Schrödinger representation. Generation of thermal ensembles in the extended space of QHD variables is discussed. QHD reduces to classical mechanics at the first order, closely resembles classical mechanics at the higher orders, and requires little computational effort, providing an efficient tool for treatment of the quantum effects in large systems.  相似文献   

13.
A density matrix evolution method [H. J. C. Berendsen and J. Mavri, J. Phys. Chem., 97, 13464 (1993)] to simulate the dynamics of quantum systems embedded in a classical environment is applied to study the inelastic collisions of a classical particle with a five-level quantum harmonic oscillator. We improved the numerical performance by rewriting the Liouville–von Neumann equation in the interaction representation and so eliminated the frequencies of the unperturbed oscillator. Furthermore, replacement of the fixed time step fourth-order Runge–Kutta integrator with an adaptive step size control fourth-order Runge–Kutta resulted in significantly lower computational effort at the same desired accuracy. © 1996 by John Wiley & Sons, Inc.  相似文献   

14.
In this paper, we present simulations of the decay of quantum coherence between vibrational states of I(2) in its ground (X) electronic state embedded in a cryogenic Kr matrix. We employ a numerical method based on the semiclassical limit of the quantum Liouville equation, which allows the simulation of the evolution and decay of quantum vibrational coherence using classical trajectories and ensemble averaging. The vibrational level-dependent interaction of the I(2)(X) oscillator with the rare-gas environment is modeled using a recently developed method for constructing state-dependent many-body potentials for quantum vibrations in a many-body classical environment [J. M. Riga, E. Fredj, and C. C. Martens, J. Chem. Phys. 122, 174107 (2005)]. The vibrational dephasing rates gamma(0n) for coherences prepared between the ground vibrational state mid R:0 and excited vibrational state mid R:n are calculated as a function of n and lattice temperature T. Excellent agreement with recent experiments performed by Karavitis et al. [Phys. Chem. Chem. Phys. 7, 791 (2005)] is obtained.  相似文献   

15.
Classical trajectory study of nuclear motion on the Born-Oppenheimer potential energy surfaces is now one of the standard methods of chemical dynamics. In particular, this approach is inevitable in the studies of large molecular systems. However, as soon as more than a single potential energy surface is involved due to nonadiabatic coupling, such a naive application of classical mechanics loses its theoretical foundation. This is a classic and fundamental issue in the foundation of chemistry. To cope with this problem, we propose a generalization of classical mechanics that provides a path even in cases where multiple potential energy surfaces are involved in a single event and the Born-Oppenheimer approximation breaks down. This generalization is made by diagonalization of the matrix representation of nuclear forces in nonadiabatic dynamics, which is derived from a mixed quantum-classical representation of the electron-nucleus entangled Hamiltonian [Takatsuka, K. J. Chem. Phys. 2006, 124, 064111]. A manifestation of quantum fluctuation on a classical subsystem that directly contacts with a quantum subsystem is discussed. We also show that the Hamiltonian thus represented gives a theoretical foundation to examine the validity of the so-called semiclassical Ehrenfest theory (or mean-field theory) for electron quantum wavepacket dynamics, and indeed, it is pointed out that the electronic Hamiltonian to be used in this theory should be slightly modified.  相似文献   

16.
In this paper, we describe a single ensemble implementation of the semiclassical Liouville method for simulating quantum processes using classical trajectories. In this approach, one ensemble of trajectories supports the evolution of all semiclassical density matrix elements, rather than employing a distinct ensemble for each. The ensemble evolves classically under a single reference Hamiltonian, which is chosen based on physical grounds; for electronic relaxation of an initially excited state, the initially populated upper surface Hamiltonian is the natural choice. Classical trajectories evolving on the reference potential then represent the time-dependent upper state population density and also the electronic coherence and the ground state density created by electronic transition. The error made in the classical motion of the trajectories for these latter distributions is compensated for by incorporating the difference between the correct and reference Liouville propagators into the calculation of the coefficients of the individual trajectories. This approach gives very accurate results for a number of model problems and cases describing ultrafast electronic relaxation dynamics.  相似文献   

17.
We show how to apply a general theoretical approach to nonequilibrium statistical mechanics, called Maximum Caliber, originally suggested by E. T. Jaynes [Annu. Rev. Phys. Chem. 31, 579 (1980)], to a problem of two-state dynamics. Maximum Caliber is a variational principle for dynamics in the same spirit that Maximum Entropy is a variational principle for equilibrium statistical mechanics. The central idea is to compute a dynamical partition function, a sum of weights over all microscopic paths, rather than over microstates. We illustrate the method on the simple problem of two-state dynamics, A<-->B, first for a single particle, then for M particles. Maximum Caliber gives a unified framework for deriving all the relevant dynamical properties, including the microtrajectories and all the moments of the time-dependent probability density. While it can readily be used to derive the traditional master equation and the Langevin results, it goes beyond them in also giving trajectory information. For example, we derive the Langevin noise distribution rather than assuming it. As a general approach to solving nonequilibrium statistical mechanics dynamical problems, Maximum Caliber has some advantages: (1) It is partition-function-based, so we can draw insights from similarities to equilibrium statistical mechanics. (2) It is trajectory-based, so it gives more dynamical information than population-based approaches like master equations; this is particularly important for few-particle and single-molecule systems. (3) It gives an unambiguous way to relate flows to forces, which has traditionally posed challenges. (4) Like Maximum Entropy, it may be useful for data analysis, specifically for time-dependent phenomena.  相似文献   

18.
19.
20.
We present results of time-dependent quantum mechanics (TDQM) and quasiclassical trajectory (QCT) studies of the excitation function for O(3P) + H2(v = 0-3,j = 0) --> OH + H from threshold to 30 kcal/mol collision energy using benchmark potential energy surfaces [Rogers et al., J. Phys. Chem. A 104, 2308 (2000)]. For H2(v = 0) there is excellent agreement between quantum and classical results. The TDQM results show that the reactive threshold drops from 10 kcal/mol for v = 0 to 6 for v = 1, 5 for v = 2 and 4 for v = 3, suggesting a much slower increase in rate constant with vibrational excitation above v = 1 than below. For H2(v > 0), the classical results are larger than the quantum results by a factor approximately 2 near threshold, but the agreement monotonically improves until they are within approximately 10% near 30 kcal/mol collision energy. We believe these differences arise from stronger vibrational adiabaticity in the quantum dynamics, an effect examined before for this system at lower energies. We have also computed QCT OH(v',j') state-resolved cross sections and angular distributions. The QCT state-resolved OH(v') cross sections peak at the same vibrational quantum number as the H2 reagent. The OH rotational distributions are also quite hot and tend to cluster around high rotational quantum numbers. However, the dynamics seem to dictate a cutoff in the energy going into OH rotation indicating an angular momentum constraint. The state-resolved OH distributions were fit to probability functions based on conventional information theory extended to include an energy gap law for product vibrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号