首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Maichel B  Kenndler E 《Electrophoresis》2000,21(15):3160-3173
Recent developments of separation of neutral analytes in capillary systems with the mobile phase driven by the electroosmotic flow (EOF) and charged additives acting as a pseudostationary phase are reviewed. As pseudostationary phases a number of additives are used. Soluble polymers, either anionic or cationic, were applied as alternatives to micelles. Monomeric charged additives are also intended to form associates with the analytes, leading to selective retention and separation in a similar way as the polymeric pseudostationary phases. Dendrimers, spherical macromolecules with highly branched chains and charged terminal groups, are successfully applied for the separation of lipophilic analytes. Polymers with covalently stabilized structures are introduced in the form of permanent micelles and are therefore insensitive to the mobile phase composition, enlarging the applicability of micellar electrokinetic capillary chromatography (MEKC).  相似文献   

2.
The potential of methacrylate-based mixed-mode monolithic stationary phases bearing sulfonic acid groups for the separation of positively charged analytes (alkylanilines, amino acids, and peptides) by capillary electrochromatography (CEC) is investigated. The retention mechanism of protonated alkylanilines as positively charged model solutes on these negatively charged mixed-mode stationary phases is investigated by studying the influence of mobile phase and stationary phase parameters on the corrected retention factor which was calculated by taking the electrophoretic mobility of the solutes into consideration. It is shown that both solvophobic and ion-exchange interactions contribute to the retention of these analytes. The dependence of the corrected retention factor on (1) the concentration of the counter ion ammonium and (2) the number of methylene groups in the alkyl chain of the model analytes investigated shows clearly that a one-site model (solvophobic and ion-exchange interactions take place simultaneously at a single type of site) has to be taken to describe the retention behaviour observed. Comparison of the CEC separation of these charged analytes with electrophoretic mobilities determined by open-tubular capillary electrophoresis shows that mainly chromatographic interactions (solvophobic and ion-exchange interactions) are responsible for the selectivity observed in CEC, while the electrophoretic migration of these analytes plays only a minor role.  相似文献   

3.
Peric I  Kenndler E 《Electrophoresis》2003,24(17):2924-2934
Although electrochromatography in packed beds or monolithic columns has gained enormous interest, techniques based on charged pseudostationary phases like micelles are of high practical importance in electrically driven separation science. However, nonmicellar alternatives, e.g., using charged soluble polymers or smaller additives are still attractive, as they allow high concentrations of organic solvents, and their application is not limited by the critical micellar concentration. This review discusses the developments in the field of electrokinetic chromatography with these additives in the last three years, covering ionic polymeric pseudostationary phases, dendrimers and so-called micelle polymers, but also small molecules which implement separation selectivity due to their specific interaction with the analytes.  相似文献   

4.
Five electrokinetic chromatography systems were compared concerning retention behavior and lipophilicity. Comparison was based on capacity (retention) factors of some steroidal drugs, and on log P(OW) values derived by the aid of reference substances. In all systems the aqueous buffer consisted of phosphate (20 mM, pH 7.5). Two systems had micelles, three systems microdroplets as negatively charged pseudostationary phases. The micelles were formed by sodium dodecyl sulfate (SDS) and sodium cholate, respectively. One microemulsion consisted (as usual) from octane as oil, butanol as cosurfactant and SDS as charged tenside. Two microemulsions were made from biosurfactants (phosphatidylcholine, isopropylmyristate) to better simulate biopartitioning of the drugs. Even for noncharged analytes a change in migration sequence and thus in log P(OW) was observed for the systems consisting of the biosurfactants, compared to the others. For the former systems, log P(OW) derived from the capacity factors agree for all analytes with those obtained from calculation by computer software based on the structure of the drugs, and with experimental data directly obtained from octanol/water partitioning.  相似文献   

5.
Durkin D  Foley JP 《Electrophoresis》2000,21(10):1997-2009
The concept of dual opposite injection in capillary electrophoresis (DOI-CE) for the simultaneous separation, under conditions of suppressed electroosmotic flow, of anionic and cationic compounds with no bias in resolution and analysis time, is extended to a higher pH range in a zone electrophoresis mode (DOI-CZE). A new DOI-CE separation mode based on electrokinetic chromatography is also introduced (DOI-EKC). Whereas conventional CZE and DOI-CZE are limited to the separation of charged compounds with different electrophoretic mobilities, DOI-EKC is shown to be capable of separating compounds with the same or similar electrophoretic mobilities. In contrast to conventional EKC with charged pseudostationary phases that often interact too strongly with analytes of opposite charge, the neutral pseudostationary phases appropriate for DOI-EKC are simultaneously compatible with anionic and cationic compounds. This work describes two buffer additives that dynamically suppress electroosmotic flow (EOF) at a higher pH (6.5) than in a previous study (4.4), thus allowing DOI-CZE of several pharmaceutical bases and weakly acidic positional isomers. Several DOI-EKC systems based on nonionic (10 lauryl ether, Brij 35) or zwitterionic (SB-12, CAS U) micelles, or nonionic vesicles (Brij 30) are examined using a six-component test mixture that is difficult to separate by CZE or DOI-CZE. The effect of electromigration dispersion on peak shape and efficiency, and the effect of surfactant concentration on retention, selectivity, and efficiency are described.  相似文献   

6.
A high-performance liquid chromatography (HPLC) method using silica column eluted with aqueous solvent mobile phase containing triethylamine (TEA) and acetic acid (ACH) at trace percentages was characterized for the analysis of basic compounds. The key mechanism of this system is ion-exchange accompanying interaction of silanol groups. The increase in the ACH concentration in the mobile phase minimizes the ionization of the silanol group, leading to reduced retention time. However, the greater extent of ionization of silanol caused by the increase of TEA concentration helps to retain basic compounds in the column. Further, the protonated TEA that is positively charged also competes for the ionized silanol group with basic compounds, resulting in the modification of retention time. On the other hand, the retention becomes longer with increasing proportion of either organic or aqueous solvent in mobile phase, and partial replacement of methanol with acetonitrile.  相似文献   

7.
研究了两亲性无规共聚物聚(苯乙烯-co-甲基丙烯酸)(P(St-co-MAA))(单体摩尔比分别为6:4和7:3)自组装胶束的物理化学性质,及其作为假固定相(PSP)的胶束电动色谱性能。测定了聚合物胶束的临界胶束浓度(CMC),对胶束内核微环境的极性、表面电荷密度和流体力学直径等微结构参数进行了表征,对时间窗口、亚甲基选择性等电动色谱参数进行了测定,并与聚(甲基丙烯酸甲酯-co-甲基丙烯酸)(P(MMA-co-MAA))胶束、十二烷基硫酸钠(SDS)胶束体系进行了比较;利用线性溶剂化能关系(LSER)研究了聚合物PSP的选择性差异。结果表明:P(St-co-MAA)体系具有最小的CMC、最宽的时间窗口和最好的亚甲基选择性;LSER表明,疏水作用是决定聚合物PSP选择性的最主要因素,氢键酸度其次,特别是P(St-co-MAA)(单体摩尔比7:3)体系具有最高的作用参数,显示了该PSP具有较高的分离选择性。  相似文献   

8.
Some regularities are studied for the ion-exchange extraction of the gold(I) thiocyanate complexes by ion-exchangers of various physical and chemical structure. It is shown that gold is present in the resin phase as a [Au(SCN)2]- species and is held by the positively charged sorbent functional groups. The conclusion is drawn that high ion-exchanger affinity for this ion is caused by the high polarizability, linear structure, and small charge of the latter.  相似文献   

9.
Subramaniam V  Griffith L  Haes AJ 《The Analyst》2011,136(17):3469-3477
Capillary electrophoresis based separations of the hypothesized Parkinson's disease biomarkers dopamine, epinephrine, pyrocatechol, L-3,4-dihydroxyphenylalanine (L-DOPA), glutathione, and uric acid are performed in the presence of a 1 nM 11-mercaptoundecanoic acid functionalized gold (Au@MUA) nanoparticle pseudostationary phase plug. Au@MUA nanoparticles are monitored in the capillary and remain stable in the presence of electrically-driven flow. Migration times, peak areas, and relative velocity changes (vs. no pseudostationary) are monitored upon varying (1) the Au@MUA nanoparticle pseudostationary phase plug length at a fixed separation voltage and (2) the separation voltage for a fixed Au@MUA nanoparticle pseudostationary phase plug length. For instance, the migration times of positively charged dopamine and epinephrine increase slightly as the nanoparticle pseudostationary phase plug length increases with concomitant decreases in peak areas and relative velocities as a result of attractive forces between the positively charged analytes and the negatively charged nanoparticles. Migration times for neutral pyrocatechol and slightly negative L-DOPA did not exhibit significant changes with increasing nanoparticle pseudostationary plug length; however, reduction in peak areas for these two molecules were evident and attributed to non-specific interactions (i.e. hydrogen bonding and van der Waals interactions) between the biomarkers and nanoparticles. Moreover, negatively charged uric acid and glutathione displayed progressively decreasing migration times and peak areas and as a result, increased relative velocities with increasing nanoparticle pseudostationary phase plug length. These trends are attributed to partitioning and exchanging with 11-mercaptoundecanoic acid on nanoparticle surfaces for uric acid and glutathione, respectively. Similar trends are observed when the separation voltage decreased thereby suggesting that nanoparticle-biomarker interaction time dictates these trends. Understanding these analyte migration time, peak area, and velocity trends will expand our insight for incorporating nanoparticles in separations.  相似文献   

10.
王晓欢  陈磊 《色谱》2018,36(9):850-857
混合模式色谱(MMC)在复杂样品的分离分析方面具有独到的优势,相比于单一模式色谱,MMC受到多种作用控制,保留机理更为复杂。利用巯基-烯点击化学方法分别制备了单配体和双配体两种硫醚嵌入苯磺酸硅胶固定相,通过改变pH、离子强度和有机溶剂强度等流动相条件,以4种碱性药物为模型,对其保留机理进行了探讨。结果表明,两种固定相都具有反相和离子交换的混合保留机理。通过改变流动相中盐浓度、考察溶质保留因子与盐浓度倒数的关系,证明了反相、单纯离子交换和反相协同离子交换三种作用形式的保留模型更为合理。定量研究表明,在两个固定相上,由单纯离子交换和反相协同离子交换构成的总离子交换作用占主导,各作用占比与溶质、流动相组成、固定相配体的类型及其比例等密切相关,并且协同作用对溶质的保留和分离选择性影响很大。混合模式色谱保留机理的研究对于新型固定相设计和复杂体系的分离优化具有重要理论指导意义。  相似文献   

11.
The thermal effect on retention and separation selectivity of inorganic anions and aromatic sulfonate ions in anion-exchange chromatography is studied on a quaternized styrene-divinylbenzene copolymer anion-exchange column in the temperature range of 40-120 °C using superheated water chromatography. The selectivity coefficient for a pair of identically charged anions approaches unity as temperature increases provided the ions have the same effective size, such that the retention of an analyte ion decreases with an increase in temperature when the analyte ion has stronger affinity for the ion-exchanger than that of the eluent counterion, whereas it increases when it has weaker affinity. The change in anion-exchange selectivity with temperature observed with superheated water chromatography has been discussed on the basis of the effect of temperature on hydration of the ions. At elevated temperatures, especially in superheated water, the electrostatic interaction or association of the ions with the fixed ion in the resin phase becomes a predominant factor resulting in a different separation selectivity from that obtained at ambient temperature.  相似文献   

12.
Pascoe R  Foley JP 《Electrophoresis》2002,23(11):1618-1627
Vesicles are large aggregates of surfactant monomers consisting of a spherical bilayer surrounding an internal cavity of solvent. The bilayer structure allows vesicles to be attractive models for the study of various transmembrane and binding processes. The use of thermodynamically stable vesicles (TSV) formed from oppositely charged surfactants for use as a pseudostationary phase in electrokinetic chromatography (EKC) was first accomplished using dodecyltrimethylammonium bromide and sodium dodecyl sulfate (DTAB/SDS). Surfactant vesicles have demonstrated enhanced separation characteristics compared to conventional micelles in EKC, although only investigated in aqueous media. Organic modifiers have been widely studied and used in EKC to enhance separation conditions. In this study, vesicles formed from cetyltrimethylammonium bromide and sodium octyl sulfate (CTAB/SOS) were investigated in the presence of "class I and II" organic modifiers. Electrophoretic and chromatographic parameters were examined as well as linear solvation energy relationship analysis (LSER) to characterize the effects of the modifiers on retention and selectivity in EKC. LSER analysis is a useful way to quantitatively investigate solute/solvent interactions responsible for retention and selectivity.  相似文献   

13.
Micellar electrokinetic capillary chromatography (MECC) is a branch of capillary electrophoretic techniques, in which surfactant micelles are added to the electrolyte solution as pseudostationary phase. Separation in MECC is based on electrophoretic mobilities of the analytes when partitioned into micelles1. In this work, four acidic drugs similar in structure with aryl carboxylic acid were separated by MECC. The effects of type of surfactant, such as anionic surfactant SDS, nonionic …  相似文献   

14.
A retention model based on electrostatic theories is applied to the analysis of the ion-exchange chromatographic separation of ions. The adsorption of counterions and the ion-pair formation between ion-exchange sites and counterions are included in the model; these represent separation selectivity. A nonstoichiometric contribution, the accumulation of ions in an electrical double layer, is also involved in the model. The retention of ions is calculated by assuming these ionic properties for both eluent and solute ions. The comparison of calculated retention factors with experimental values gives insight into the ion-exchange nature of ions; e.g. a strongly adsorbed ion should have higher ion-pair formation ability, and vice versa.  相似文献   

15.
姚礼峰  冯钰锜  达世禄 《色谱》2005,23(1):69-72
研究了碱基在十二胺-N,N-二亚甲基膦酸(DDPA)改性氧化锆固定相(DPZ)上的色谱保留行为,考察了流动相中甲醇含量、流动相pH值、缓冲溶液中离子类型和离子强度对碱基保留的影响,对DDPA在氧化锆表面的吸附方式进行了研究。研究结果表明,DDPA仅以一个膦酸基与氧化锆结合,因而DPZ固定相表面上除了有长链的疏水烷基外,还有酸性的膦酸基和碱性的氨基。碱基分子中也存在氨基和酰胺基等极性基团,因此碱基在DPZ固定相上除了有疏水作用外,还具有电荷排斥作用、离子交换作用等多种保留机理。由于多种保留机理的存在,使得碱基在DPZ固定相上具有较好的分离选择性,在酸性条件下对碱基混合样品的分离取得了满意的结果。  相似文献   

16.
A method for the preparation of a bipolar ion-exchange surface was proposed; it consists in the dynamic arrangement of the nanoparticles of an ion-exchanger modifier in the macropores of a matrix ion exchanger of opposite polarity and the retention of these nanoparticles by Coulomb forces. The NACATEX analytical cation-exchange column with the separating surface of a new type was prepared, which is suitable for the separation of the mixtures of alkaline element and ammonium ions and also calcium and magnesium ions.  相似文献   

17.
The nature of the interaction of positively charged analytes with the surface of reversed-phase bonded phases has been investigated as a function of both pH and volume fraction of organic modifier. Studies of the combined effect of both the parameters have been previously reported by us, and the data presented here further demonstrate a multiplicative interaction between pH and the concentration of organic modifier in the mobile phase. Fitting of the data as functions of pH and eluent composition clearly shows that the hydrophobically assisted ion-exchange process dominates over a purely reversed-phase or a pure ion-exchange retention mechanism. The underlying theory is developed in detail, and the mechanism is elucidated using several reversed-phase packings of substantially different character.  相似文献   

18.
19.
LiAlTiO4的合成及对Li+的离子交换选择性   总被引:5,自引:0,他引:5  
LiAlTiO4的合成及对Li+的离子交换选择性;复合氧化物;锂;离子交换;无机离子交换剂;尖晶石结构  相似文献   

20.
Silica-based, tentacular weak cation-exchanger particles were prepared for use as the stationary phase in the separation of positively charged sample components by capillary electrochromatography (CEC). Silica beads were first silanized with 3-(trimethoxysilyl) propyl methacrylate that served as a heterobifunctional linker, which reacted with 2-acrylarmidoglycolic acid in a second step by radical polymerization in aqueous solution. Baseline separation of basic peptides with good column efficiency was obtained on packed capillary columns by isocratic elution CEC with NaCl as the mobile phase modulator. The retention mechanism in the electrochromatographic process was studied by examining the effect of salt concentration on the migration behavior of the peptides. The chromatographic retention factor k'(lc) for charged sample components in the electrochromatographic process was estimated on the assumption that the overall migration rate of a charged migrant can be taken as the sum of the rate of chromatographic elution and the rate of electrophoretic migration. The estimated k(lc) values from experimental results were plotted against the molal salt concentration on a double logarithmic scale. The linear correlation is in good agreement with the prediction by the theory on the basis of traditional ion-exchange chromatography. The comparison of CEC results, obtained with open tubular and packed capillary columns having the same retentive functions as the stationary phase, supports the notion that variation of the phase ratio in the column offers an additional means to modulate the electrochromatographic migration behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号