首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
La-Mn-Ni-O催化剂组成、结构、还原性能及氧化活性   总被引:1,自引:0,他引:1  
用硝酸盐分解法合成了LaMn_(1-x)Ni_xO_3(0≤2≤1.0), 研究了组成、晶体结构及其与还原性能、CO和CH_3OH催化氧化活性的关系。XRD证实在0.0≤x≤1.0范围内, 本体系都生成单一钙钛矿结构: 0.0≤x≤0.4, 0.8相似文献   

2.
A molecular mechanics computational procedure, previously used for the refinement and the analysis of several crystalline polymers, was applied to investigate the crystal structures of the tetramer (T4) and hexamer (T6) of thiophene, as well as the crystal structure of polythiophene (PT). Simultaneous minimization of intra- and intermolecular energies of the T4 and T6 structures, obtained by Rietveld analysis of powder X-ray diffraction profiles, leads to molecular conformations showing smaller deviations from the ring co-planarity than the original models. For both oligomers the calculations confirm that the molecular centre of inversion is not a crystallographic centre of symmetry, as also revealed by X-ray diffraction of the T6 single crystal. This surprising effect appears to arise from intermolecular interactions between the terminal residues, hence is not relevant with respect to the PT polymer structure. The small energy cost for constraining the molecules at the crystallographic centre of symmetry is in agreement with experimental findings that reveal the existence of polymorphs for both T4 and T6. The calculations on the T6 single crystal were used to upgrade the MM2-like force field, which was then used to determine the minimum-energy model of the monoclinic crystal structure of polythiophene.  相似文献   

3.
Britto S  Kamath PV 《Inorganic chemistry》2011,50(12):5619-5627
The [LiAl(2)(OH)(6)](+) layer obtained from gibbsite-Al(OH)(3) belongs to the layer group symmetry P-312/m. This layer satisfies the defining characteristics of a synthon in that it predicts all the polymorphic modifications of the layered double hydroxides of Li and Al. The various possible ways of stacking these layers can be derived by the systematic elimination of the principal symmetry elements comprising the layer group. This approach yields the complete universe of possible structures. When the 3 axis of the layer is conserved in the stacking, the resultant crystal adopts the structure of the 1H, 2H, or 3R polytypes (H, hexagonal; R, rhombohedral). When the 3 axis is destroyed and the 2/m axis is retained, the crystal adopts monoclinic symmetry and crystallizes in the structures of the 1M(1) or 1M(2) (M, monoclinic) polytypes; the two polytypes differ only in their translational component. Experimentally, gibbsite-based precursors yield the 2H polytype, and bayerite-based precursors yield the 1M polytype. Faulted structures incorporating differently oriented 1M(1) motifs or a mixture of 1M(1) and 1M(2) motifs are also obtained. These stacking faults result in cation disorder along the c axis and produce signature effects on the line shapes of select reflections in the powder X-ray diffraction patterns. This symmetry-guided approach is general and can be extended to other classes of layered solids.  相似文献   

4.
Guanine crystals are widely used in nature as components of multilayer reflectors. Guanine‐based reflective systems found in the copepod cuticle and in the mirror of the scallop eye are unique in that the multilayered reflectors are tiled to form a contiguous packed array. In the copepod cuticle, hexagonal crystals are closely packed to produce brilliant colors. In the scallop eye, square crystals are tiled to obtain an image‐forming reflecting mirror. The tiles are about 1 μm in size and 70 nm thick. According to analysis of their electron diffraction patterns, the hexagon and square tiles are not single crystals. Rather, each tile type is a composite of what appears to be three crystalline domains differently oriented and stacked onto one another, achieved through a twice‐repeated twinning about their ⟨011⟩ and ⟨021⟩ crystal axes, respectively. By these means, the monoclinic guanine crystal mimics higher symmetry hexagonal and tetragonal structures to achieve unique morphologies.  相似文献   

5.
Jiang JJ  Pan M  Liu JM  Wang W  Su CY 《Inorganic chemistry》2010,49(21):10166-10173
By using the tripodal ligand ntb (tris(benzimidazole-2-ylmethyl)amine) and lanthanide nitrate, three isomorphous series of coordination frameworks of the general formula [Ln(ntb)(NO(3))(3)]·solvents (series 1: monoclinic C2/c, Ln = Gd(3+) and Yb(3+); series 2: hexagonal P3(1)/c, Ln = Nd(3+), Eu(3+), Gd(3+), and Er(3+); series 3, cubic Pa3?, Ln = Gd(3+) and Er(3+); solvent = H(2)O or CH(3)OH) have been assembled and characterized with IR, elemental analyses, and single crystal and powder X-ray diffraction methods. In all isomorphous complexes, analogous [Ln(ntb)(NO(3))(3)] coordination monomers of the same structure act as the building blocks to be assembled via hydrogen bonds into three-dimensional (3D) frameworks. So the complexes of the same lanthanide ion (for example, the Gd(3+) ion) from three isomorphous series form polymorphs, for example, monoclinic polymorph 1-Gd, hexagonal polymorph 2-Gd, and cubic polymorph 3-Gd. The single-crystal analyses revealed that the polymorphism was related to different fashions of hydrogen bonding interactions, which was caused by different crystallization conditions, leading to the formation of different 3D hydrogen-bonded frameworks showing distinct porous and topological structures. The monoclinic and hexagonal crystals contain 1D channels, while the cubic crystal is nonporous. The thermogravimetric analyses indicated that all polymorphic crystals have high thermal stability against the removal of guest molecules, and the robust porosity of the hexagonal crystals has been verified by temperature-dependent single-crystal-to-single-crystal measurements upon guest removal/uptake. The solvents adsorption study disclosed that the porous frameworks show high selectivity of benzene against toluene and xylene, while the gas adsorption measurements indicated a moderate H(2), CO(2), and MeOH storage capacity in contrast to low N(2) uptake. The solid-state photoluminescence of the Eu(3+) and Nd(3+) complexes in the near-infrared and visible region has also been investigated, offering examples with optical properties tunable by means of isomorphous replacement.  相似文献   

6.
Crystallization of carbamazepine (CBZ), an antiepileptic drug, precipitated from confined spaces of nonionic microemulsions was investigated. The study was aimed to correlate the structure of the microemulsion [water-in-oil (W/O), bicontinuous, and oil-in-water (O/W)] with the crystalline structure and morphology of solid CBZ. The precipitated CBZ was studied by DSC, TGA, powder XRD, single-crystal XRD, SEM, and optical microscopy. The results suggest that the microstructure of the microemulsions influences the crystallization process and allows crystallizing polymorphs that exhibit different crystal structure and habits. W/O nanodroplets orient the crystallizing CBZ molecules to form a prismlike anhydrous polymorphic form with monoclinic unit cell and P21/n space group. Bicontinuous structures lead to platelike dihydrate crystals with orthorhombic unit cell and Cmca space group. The O/W nanodroplets cause the formation of needlelike dihydrate crystals with monoclinic unit cell and P21/c space group. The morphological features of solid CBZ remain predetermined by the basic symmetry and parameters of its unit cell. Precipitation of CBZ pseudopolymorphs from supersaturated microemulsion is discussed in terms of oriented attachment that provides perfect packing of numerous separately nucleated ordered nuclei of CBZ into microscale platelets and then into macroscopic crystals. Crystallization from microemulsion media enabling one to obtain the drug (CBZ) with predicted structure and morphology should be of great significance for pharmaceutical applications.  相似文献   

7.
The title compound forms as biphasic single crystals containing the α- and β-polymorphs. The structure of both polymorphs was solved and refined from single crystal X-ray data in a simultaneous refinement. The structures consist of rods of composition Sb3O4 separated by isolated iodine ions. The two phases differ only in the next nearest neighbour arrangement. The orthorhombic α-phase crystallizes in space group Pbn21, and the monoclinic β-phase in space group P21/n.  相似文献   

8.
New conjugated polymeric columns with a hexagonal symmetry were prepared via topochemical polymerisation of star-shaped supramolecular liquid crystals formed by hydrogen bonding between a phloroglucinol core and pyridine derivatives containing a diacetylenic group in the alkyl chain. The mesomorphic properties of the supramolecular monomer and its photopolymerisation behaviour were investigated. The supramolecular liquid crystal exhibited a rectangular columnar mesophase. Photopolymerisation of supramolecular monomer along the column axis in the liquid crystalline state provided well-ordered conjugated polydiacetylenic columns with a two-dimensional hexagonal symmetry. Fourier transform infrared and ultraviolet–visible spectroscopy affirmed that conjugated polydiacetylenes were produced by 1,4-polymerisation of the supramolecular monomer along the column axis. X-ray diffraction analysis showed that a two-dimensional columnar order in the supramolecular monomer was maintained after photopolymerisation, and that the resulting polydiacetylene had a hexagonal array of conjugated columns. Our controlled methodology provides a new route to conjugated polymeric columns with highly ordered structures by self-assembly and polymerisation of star-shaped supramolecular liquid crystals.  相似文献   

9.
We have studied chiral symmetry breaking in the melt crystallization of 1,1'-binaphthyl. We confirm that chiral symmetry breaking can be induced by stirring the melt as it crystallizes. We find an additional process of vapor crystallization to occur alongside the melt crystallization. This complicates the analysis of the enantiomorphism by introducing a further phenomenon: that of polymorphism. Crystallographic studies by X-ray diffraction reveal two polymorphs of 1,1'-binaphthyl that are made up of two different conformers of each of the two enantiomeric forms of the molecule. Crystals from the melt are generally chiral tetragonal crystals (P42(1)2(1)) composed of (R)- or (S)-1,1'-binaphthyl in a transoid conformer, while those from the vapor are racemic monoclinic crystals (C2/c) made up of the cisoid conformer of both (R)- and (S)-1,1'-binaphthyl enantiomers. The main intermolecular interactions in all these crystals are weak aromatic CH/pi hydrogen bonds, which are responsible for the enantiomeric discrimination in the molecular recognition during crystallization. A tendency for whisker crystal formation is notable in 1,1'-binaphthyl. In stirred crystallization, fluid and mechanical forces can break off these whiskers, which provide secondary nuclei for further crystallization. This autocatalytic mechanism induces chiral symmetry breaking during the crystallization.  相似文献   

10.
The mechanism of Preferential Enrichment, an unusual enantiomeric resolution phenomenon observed upon recrystallization of a series of racemic crystals which are classified as a racemic mixed crystal with fairly ordered arrangement of the two enantiomers, has been studied. On the basis of the existence of polymorphs and the occurrence of the resulting polymorphic transition during crystallization from solution, the mechanism has been accounted for in terms of (1) a preferential homochiral molecular association to form one-dimensional chain structures in the supersaturated solution of the racemate or nonracemic sample with a low ee value, (2) a kinetic formation of a metastable crystalline phase retaining the homochiral chain structures in a process of nucleation, (3) a polymorphic transition from the metastable phase to a stable one followed by enantioselective liberation of the excess R (or S) enantiomers from the transformed crystal into solution at the beginning of crystal growth to result in a slight enrichment (up to 10% ee) of the opposite S (or R) enantiomer in the deposited crystals, together with an enantiomeric enrichment of the R (or S) enantiomer in the mother liquor, and (4) a chiral discrimination by the once formed S (or R)-rich stable crystalline phase in a process of the subsequent crystal growth, leading to a considerable enantiomeric enrichment of the R (or S) enantiomer up to 100% ee in the mother liquor. The processes (3) and (4) are considered to be directly responsible for an enrichment of one enantiomer in the mother liquor. The association mode of the two enantiomers in solution has been investigated by means of (i) the solubility measurement and (ii) the number-averaged molecular weight measurement in solution by vapor pressure osmometry, together with (iii) the molecular dynamics simulation of oligomer models. The polymorphic transition during crystallization has been observed visually and by means of the in situ FTIR technique and DSC measurement. Both metastable and stable crystals have been obtained, and their crystal structures have been elucidated by X-ray crystallographic analysis of their single crystals.  相似文献   

11.
A composite constituted by zirconia supported on magnesia is thermally treated. Depending on temperature, several crystal sizes and crystalline zirconia structures are obtained. At low temperatures, cubic zirconia crystals are found to be deposited on the crystalline magnesia matrix. As temperature increases, the cubic zirconia phase transforms to the tetragonal and the monoclinic phases. They form clusters supported on the MgO matrix. All these results are supported by different analytical techniques and a catalytic test.  相似文献   

12.
An X-ray study of single crystals extracted from an arc-melted Yb-Fe-Ga alloy showed that the diffraction pattern can be modeled by an intergrown crystal that has three sorts of domains: one hexagonal (1, LuFe(9.5) type) and two rhombohedral (2 a and 2 b, PrFe(7) type), the last two twinned by reticular merohedry. Crystals 1 and 2 are essentially polytypes with maximum degree of order (MDO polytypes), built up of nearly identical slabs that are stacked along [001] in ABAB em leader (1). and ABCABC em leader (2). sequences. Structure refinement was performed by a newly developed program that allowed us to refine several structures on a single data set. We found that the hexagonal and rhombohedral domains differ in chemical composition: while 1 shows a higher rate of Yb substitution by Fe(2) dumbbells, 2 shows partial substitution of Fe by Ga. Our observation of the nanoscale phase segregation is supported by latest finding of nonrandom distribution of stacking faults in a similar 2:17 alloy. An unequal distribution of chemical substitutions in 1 and 2 apparently compensates the inherent mismatch of basal plane dimensions of the individual MDO polytypes and thus constrains their cell parameters within the syntaxy. According to our knowledge this is the first example of two chemically distinct polytypes constituting a single crystal, refined on a single set of diffraction data.  相似文献   

13.
The crystalline structures of ethylene-dimethylaminoethyl methacrylate (EDAM) copolymers, which were either melt-quenched (mq) or isothermally crystallized (iso), were studied by solid-state high-resolution 13C NMR spectroscopy. It revealed that the crystalline structures of EDAM copolymers are greatly dependent on the comonomer content, crystallization condition and the storage time after treatment. The ratio of monoclinic to orthorhombic crystal (M/O) increases with the increase in the dimethylaminoethyl methacrylate content. Higher crystallinity and lower monoclinic content were observed for iso samples compared to the mq ones. The monoclinic crystal was found to melt at lower temperatures compared to the orthorhombic one during the heating process. The degree of crystallinity as well as the contents of monoclinic and orthorhombic crystals and the M/O value are found to increase after storage at room temperature for a month.  相似文献   

14.
Non-canonical interactions in DNA remain under-explored in DNA nanotechnology. Recently, many structures with non-canonical motifs have been discovered, notably a hexagonal arrangement of typically rhombohedral DNA tensegrity triangles that forms through non-canonical sticky end interactions. Here, we find a series of mechanisms to program a hexagonal arrangement using: the sticky end sequence; triangle edge torsional stress; and crystallization condition. We showcase cross-talking between Watson–Crick and non-canonical sticky ends in which the ratio between the two dictates segregation by crystal forms or combination into composite crystals. Finally, we develop a method for reconfiguring the long-range geometry of formed crystals from rhombohedral to hexagonal and vice versa. These data demonstrate fine control over non-canonical motifs and their topological self-assembly. This will vastly increase the programmability, functionality, and versatility of rationally designed DNA constructs.  相似文献   

15.
This paper reports a theoretical investigation of the structure, stability, and electron charge density of cubic, rhombohedral, hexagonal, and monoclinic Al lattices. The equations of state and the elastic constants are computed from total energy calculations at different volumes and unit cell strains using the density functional theory approximation. The topology of the electron density is analyzed within the crystalline implementation of the atoms in molecules formalism. The results are discussed in light of the so-called anions in metallic matrices model, which permits the interpretation of the chemical bonding and the explanation of the existence of particular symmetries of inorganic crystals. First, the Al sublattices are identified as the reference building blocks of AlX(3) (X = F, Cl, OH) compounds. The calculations reveal that the equilibrium zero-pressure Al-Al shortest distance is around 2.75 A in all of the Al matrixes, similar to the value observed in the stable face centered cubic structure of Al at room conditions. Second, at their zero-pressure equilibrium geometries, the Al sublattices are found to fulfill the mechanical stability criteria or, alternatively, to show mechanical instabilities that are compatible with the distortions observed for the structures in AlX(3) crystals. However, at the equilibrium volumes of the AlX(3) crystals, all of the Al matrices violate the spinodal condition, and the cohesion and stabilization are provided by the nonmetallic X atoms. Third, the structural anisotropy of the Al sublattices seems to be the main factor to discriminate metallic matrices able to host nonmetallic elements. The inhomogeneities of the electron charge density, which favor the arrival of nonmetallic elements and the crystal formation, are notably enhanced in passing from the fcc structure of pure Al to the less isotropic Al matrices observed in AlX(3) compounds.  相似文献   

16.
17.
On the basis of the 120 x 120 complete energy matrix, the local lattice structures of the octahedral (CrO6)9- clusters for Cr3+ ions doping in a variety of oxide crystals with D3d or C3v site symmetry have been studied by employing two distorted parameters, respectively. By simulating the calculated EPR and optical spectra data to the experimental results, the local lattice structure parameters are determined unambiguously. It is shown, by means of a series of calculations, that although the local lattice structures around the M (M = Al3+, Ga3+, Li+, Sc3+, etc.) ions in host crystals are obviously different, the local lattice structures of the octahedral (CrO6)9- clusters in a variety of oxide crystals doped with Cr3+ ions are similar and fluctuant in the vicinity of that of the Cr2O3. This may be ascribed to the fact that there is the similarly octahedral (CrO6)9- clusters in a variety of oxide crystals doped with Cr3+ and the Cr2O3 crystal. Our viewpoint is consistent with that of Gaudry et al. [Phys. Rev. B 2003, 67, 094108].  相似文献   

18.
Green transparent single crystals of alpha-Ca3[Al2N4] (monoclinic, P2(1)/c, No. 14, a = 957.2(3) pm, b = 580.2(3) pm, c = 956.3(5) pm, beta = 111.62(3) degrees; Z = 4) were obtained from reactions of mixtures of the representative metals with nitrogen above temperatures of 1000 degrees C. beta-Ca3[Al2N4] (monoclinic, C2/c, No. 15, a = 1060.6(2) pm, b = 826.0(2) pm, c = 551.7(1) pm, beta = 92.1(1) degrees; Z = 4) was formed as a byproduct of a reaction of calcium with alumina under nitrogen at T = 930 degrees C in form of colorless crystals. The crystal structures of the two polymorphs contain edge- and corner-sharing AlN4 tetrahedra, leading to different layered anionic partial structures: infinity 2[AlN2/2N2/3)2(AlNN2/2N1/3)6/3(12-)] in the alpha-phase and infinity 2[Al2N2N4/2(6-)] in the beta-polymorph.  相似文献   

19.
The analgesic drug paracetamol (acetaminophen) has two reported metastable polymorphs, one with better tableting properties than the stable form, and another which remains uncharacterized. We have therefore performed a systematic crystal structure prediction search for minima in the lattice energy of crystalline paracetamol. The stable monoclinic form is found as the global lattice-energy minimum, but there are at least a dozen energetically feasible structures found, including the well-characterized metastable orthorhombic phase. Hence, we require additional criteria to reduce the number of hypothetical crystal structures that can be considered as potential polymorphs. For this purpose the elastic properties and vapor growth morphology of the known and predicted structures have been estimated using second-derivative analysis and the attachment-energy model. These inexpensive calculations give reasonable agreement with the available experimental data for the known polymorphs. Some of the hypothetical structures are predicted to have a low growth rate and plate-like morphology, and so are unlikely to be observed. Another is only marginally mechanically stable. Thus, this first consideration of such properties in a crystal-structure prediction study appears to reduce the number of predicted polymorphs while leaving a few candidates for the uncharacterized form.  相似文献   

20.
This work explored the selective synthesis of polymorphs of CdWO4 in either tetragonal or monoclinic phase by optimizing the experimental parameters. Systematic characterization indicated that both polymorphs possessed similar spherical morphologies but different structural building blocks. Electronic structures calculations for both polymorphs demonstrated the same constructions of conduction band or valence band, while the conduction band widths of both polymorphs were quite different. Both CdWO4 polymorphs exhibited good photocatalytic activity for degradation of methyl orange under UV light irradiation. When comparing to some other well-known tungstate oxide materials, the photocatalytic activity was found to follow such a consequence, monoclinic CdWO4≈monoclinic ZnWO4>tetragonal CdWO4>tetragonal CaWO4. The specific photocatalytic activity of monoclinic CdWO4 was even higher than that of commercial TiO2 photocatalyst (Degussa P25). The increased activity from the tetragonal CdWO4 to the monoclinic was consistent with the trend of the decreased symmetry, and this could be explained in terms of the geometric structures and electronic structures for both polymorphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号