首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The three-dimensional problem of finite-depth stratified flow over a small bottom irregularity is considered in mixed Euler-Lagrange variables. The Brunt-Väisälä frequency is assumed to be constant and small, and the free surface condition is replaced by the rigid roof condition. Investigation of the far field showed that the principal wave perturbations lie within an angle which for large values of the internal Froude number is much less than theKelvin angle, while the wave amplitude at infinity is of the order of l/r, where r is the polar radius. The ring perturbations are exponentially damped. As distinct from point source models, the model in question does not lead to divergence of the integrals on the flow axis [1-3]. Appproximate expressions for the radial and ring waves in terms of certain universai functions were obtained for investigating the near and far fields when the bottom irregularity is hemispherical. For the radial waves a law of similarity was obtained for which the characteristic dimension in the direction of the flow axis is the ratio of the flow velocity to the Brunt-Väisälä frequency, and the characteristic dimension in a direction perpendicular to the flow axis the depth of the fluid. In the first approximation the ring perturbations do not depend on the Brunt-Väisälä frequency. It is shown that in the near field the zone of intense wave perturbations is of the order of the fluid depth and not of the dimensions of the obstacle as for Kelvin ship waves on the surface of a homogeneous fluid.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 86–94, September–October, 1987.  相似文献   

2.
The effect of a rigid bottom of periodic form on small periodic oscillations of the free surface of a liquid is considered with the assumption of low amplitude roughness. The methodologically most significant study in this direction, [1], will be utilized. In [1] the steady-state problem for flow over an arbitrarily rough bottom was studied. Other studies have recently appeared on small free oscillations above a rough bottom. Essentially these have considered the effect of underwater obstacles and cavities on surface waves in the shallow-water approximation (for example, [2], [3]). Liquid oscillations in a layer of arbitrary depth slowly varying with length were considered in [4]. However, these results cannot be applied to the study of resonant interaction of gravitational waves with a periodically curved bottom.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 43–48, July–August, 1984.  相似文献   

3.
The unsteady motion of an ideal incompressible fluid with a free surface, developing from a state of rest, is considered. The flow is assumed to be irrotational, continuous and two-dimensional; it may be the result either of an initial disturbance of the free boundary or of a given boundary pressure distribution. The rigid boundaries of the flow region are fixed, and the free surface does not cross them at any time during the motion. The fluid is located in a uniform gravity force field and there is no surface tension. A method which in the case of localized roughness of the bottom makes it possible to find the shape of the free surface at any moment of time with predetermined accuracy is proposed. The method involves reducing the initial linear problem to a Volterra integral equation of the second kind, the kernel of this equation being a nonlocal operator. This operator has a smoothing effect, which makes it possible to reduce the solution of the initial problem to the solution of an infinite, perfect lyregular system of Volterra integral equations for a denumerable set of auxiliary functions.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 111–119, November–December, 1989.The author is grateful to I. V. Sturova and B. E. Protopopov for useful discussions and criticism.  相似文献   

4.
The dynamics of internal waves of small but finite amplitude in a two-layer fluid system bounded by rigid horizontal surfaces at bottom and top is investigated theoretically. For linear disturbances of the fluid interface the authors propose a polynomial approximation of the dispersion relation which has the same asymptotics as the exact formula in the limiting situations of very long and short waves. In the case of three-dimensional, weakly nonlinear disturbances of slowly varying shape (in the coordinate system moving with the wave) an equation like the wave equation is derived. This equation has Stokes solutions coinciding with the well-known results for infinitely deep layers. For fairly long disturbances solitary solutions of the model wave equation which fit the experimental data are determined. Novosibirsk. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.1, pp. 125–131, January–February, 1994.  相似文献   

5.
The dynamics of two-dimensional waves of small but finite amplitude are theoretically studied for the case of a two-layer system bounded by a horizontal top and bottom. It is shown that for relatively large steady-state flow velocities and at certain fluid depth ratios the vertical velocity profile is nonlinear. An evolutionary equation governing the fluid interface disturbances and allowing for the long-wave contributions of the layer inertia and surface tension, the weak nonlinearity of the waves, and the unsteady friction on all the boundaries of the system is derived. Steady-state solutions of the cnoidal and solitary wave type for the disturbed flow are determined without regard for dissipation losses. It is found that the magnitude and the direction of the flow can alter not only the lengths of the waves but also their polarity.__________Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, 2005, pp. 143–158. Original Russian Text Copyright © 2005 by Arkhipov and Khabakhpashev.  相似文献   

6.
The two-dimensional problem of the stability of the flow of an incompressible fluid over a rigid surface perturbed by a wave travelling in the propagation direction of the flow is discussed in the linear approximation. The problem is solved in the coordinate system at rest with respect to the travelling wave. The parameters of this wave are not eigenvalues of the corresponding linear problem of the stability. The solution is sought in the form of a series in powers of the wave amplitude with an accuracy out to the quadratic term inclusively. Calculations are made of the dependence of the neutral stability curve on the amplitude, wavelength, and phase velocity.Translated from Zhurnal Prikladnoi Mekhaniki Tekhnicheskoi Fiziki, No. 5, pp. 49–52, September–October, 1979.  相似文献   

7.
The problem under consideration is that of the stationary shape of the free surface of a viscous fluid in a steadily rotating horizontal cylinder. In the majority of investigations of this problem the thickness of the fluid layer coating the inner surface of the cylinder is assumed to be small [1–3]. The case of a near-horizontal free surface, with the bulk of the fluid at the cylinder bottom, was considered in [4], where, after considerable simplification, the governing equations were reduced to ordinary differential equations. In the present study the behavior of the free surface is investigated using a creeping flow approximation. The controlling parameters vary over a wide range. In the numerical computations a boundary element method was used. The numerical results have been confirmed experimentally.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 25–30, May–June, 1993.  相似文献   

8.
The scattering of water waves by a flexible porous membrane barrier in a two-layer fluid having a free surface is analysed in two dimensions. The membrane barrier is extended over the entire water depth in a two-layer fluid, each fluid being of finite depth. In the present analysis, linear wave theory and small amplitude membrane response are assumed. The porous membrane barrier is tensioned and pinned at both the free surface and the seabed. The associated mixed boundary value problem is reduced to a linear system of equations by utilizing a general orthogonality relation along with least-squares approximation method. Because of the flow discontinuity at the interface, the eigenfunctions involved have a discontinuity at the interface and the orthogonality relation used is a generalization of the classical one corresponding to a single-layer fluid. The reflection and transmission coefficients for the surface and internal modes, the free surface and interface elevations and the nondimensional membrane deflection are computed for various physical parameters like the nondimensional tension parameter, porous-effect parameter, fluid density ratio, ratio of water depths of the two fluids to analyse the efficiency of a porous membrane as a wave barrier in the two-layer fluid.  相似文献   

9.
Two-dimensional solitary waves generated by disturbances moving near the critical speed in shallow water are computed by a time-stepping procedure combined with a desingularized boundary integral method for irrotational flow. The fully non-linear kinematic and dynamic free-surface boundary conditions and the exact rigid body surface condition are employed. Three types of moving disturbances are considered: a pressure on the free surface, a change in bottom topography and a submerged cylinder. The results for the free surface pressure are compared to the results computed using a lower-dimensional model, i.e. the forced Korteweg–de Vries (fKdV) equation. The fully non-linear model predicts the upstream runaway solitons for all three types of disturbances moving near the critical speed. The predictions agree with those by the fKdV equation for a weak pressure disturbance. For a strong disturbance, the fully non-linear model predicts larger solitons than the fKdV equation. The fully non-linear calculations show that a free surface pressure generates significantly larger waves than that for a bottom bump with an identical non-dimensional forcing function in the fKdV equation. These waves can be very steep and break either upstream or downstream of the disturbance.  相似文献   

10.
The problem of the wave motion of a liquid layer was first investigated by Kapitsa [1, 2], who gave an approximate analysis of the free flow and flow in contact with gas stream, and evaluated the influence of the heat transfer processes on the flow. The problem of the stability of such a flow was studied in detail by Benjamin [3] and Yih [4, 5], These authors proposed seeking the solution of the resulting Orr-Sommerfeld equation in the form of a series in a small parameter and developed a corresponding method of successive approximations. As the small parameter [3–5], they made use of the product of the disturbance wave number and the Reynolds number. In these studies, the tangential stress on the free surface was taken equal to zero, and the fluid film was always considered essentially plane. At the same time, there are certain types of problems of considerable interest in which neither of these assumptions is satisfied. A good example might be the problem on the stability of the annular regime of two-phase flow in pipes and capillaries, when the basic stream of one fluid is separated from the pipe walls by an annular layer of another fluid. In this case, the interface has a finite radius of curvature and the tangential stress on the interface may be significantly different from zero.In the present paper, the problem of the flow stability of a fluid layer with respect to small disturbances of the boundary surface is considered with account for both the finite radius of curvature of the boundary surface and the nonzero hydrodynamic friction at the boundary. The film is assumed to be quite thin. This enables us, firstly, to consider the Reynolds number small, to use the general method of [5], and, second ly, to consider the film thickness sufficiently small in comparison with the radius of curvature of the substrate on which the film lies. Furthermore, for evaluating the stability of the laminar flow of the curved film we can use the results obtained for a plane film with account for the terms which depend on the curvature of the substrate.As a rule, previous studies have considered only one-dimensional disturbances of the boundary surface. In the present paper, in the first approximation, the stability is examined in relation to two-dimensional disturbances of this surface, corresponding to three-dimensional flow disturbances.As an example, the results obtained are applied to the investigation of the stability of the free flow of a layer of fluid over an inclined plane under the sole influence of gravity.  相似文献   

11.
Experimental data on typical profiles of free surface and channel bottom pressure for a supercritical flow over a sill are reported. This flow is shown to have, along with the known critical depth, two other characteristic depths, one of which is at the channel exit to the atmosphere and the other determines conditions under which the disturbances propagate well upstream of the sill. The experimental data are compared with calculation results based on a mathematical model that incorporates turbulent mixing upon wave breaking.  相似文献   

12.
. We study the problem of wave resistance for a “slender” cylinder submerged in a heavy fluid of finite depth with the cylinder moving at uniform supercritical speed in the direction orthogonal to its generators. We look for a divergence‐free, irrotational flow; the boundary of the region occupied by the fluid (consisting of the free surface, the bottom and the obstacle profile) is assumed to belong to streamlines and the Bernoulli condition is taken on the free surface. The problem is transformed, via the hodograph map, into a problem set in a strip with a cut. By using a “hard” version of the inverse function theorem and by taking account of the results obtained in Part I (which we recall here), we prove the existence of a complex velocity function satisfying all the requirements of the problem. In particular, this function is continuous up to the surface of the obstacle, and the only possible singularities appear at the end‐points where the boundary is not smooth. Moreover, two stagnation points appear near to the extremities of the submerged body. (Accepted October 14, 1998)  相似文献   

13.
Formal asymptotic expansions of the solution of the steady-state problem of incompressible flow in an unbounded region under the influence of a given temperature gradient along the free boundary are constructed for high Marangoni numbers. In the boundary layer near the free surface the flow satisfies a system of nonlinear equations for which in the neighborhood of the critical point self-similar solutions are found. Outside the boundary layer the slow flow approximately satisfies the equations of an inviscid fluid. A free surface equation, which when the temperature gradient vanishes determines the equilibrium free surface of the capillary fluid, is obtained. The surface of a gas bubble contiguous with a rigid wall and the shape of the capillary meniscus in the presence of nonuniform heating of the free boundary are calculated.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 61–67, May–June, 1989.  相似文献   

14.
垂直参数激励表面波研究进展   总被引:4,自引:1,他引:3  
受外激励的充液刚性容器中流体的波动问题有实际的工程应用背景.竖直方向的受周期性外激励的充液容器的自由表面波问题--Faraday波问题是流体力学三大不稳定性难题之一(另外两个不稳定性问题是Rayleigh-B\'enard对流和Taylor-Couette流).本文综述了在理想流体中和弱粘性流体中Faraday波的研究成果;介绍了作者在底部垂直激励的圆柱形容器中流体表面波图谱的实验研究和理论分析的结果.最后提出有待进一步研究的问题.图13,参74   相似文献   

15.
In order to model a ship hull’s response to the impact of surface waves, the two-dimensional problem of wave impact on an elastic beam whose ends are connected by springs with a rigid structure uniformly submerged in a fluid is considered. The fluid is assumed to be ideal and incompressible and its flow symmetric; the lateral bending of the beam is described by the Euler equation. The fluid flow and the size of the wetted region are determined simultaneously with the calculation of the the beam deflection within the framework of the Wagner approach which takes into account the reshaping of the free surface of the fluid on interacting with a body. The stresses and strains arising in the beam and at its ends during impact are found. The numerical algorithm developed makes it possible to analyze the elastic effects in fluid impacts on thin-walled structures of finite length. Moreover, as the stiffness of the connecting springs tends to zero, the solution of this problem describes the impact of an elastic beam with free ends on a weakly curved fluid surface.  相似文献   

16.
《Wave Motion》1987,9(4):323-332
Surface waves moving at a speed near some critical value on a viscous fluid flow down an incline are studied. An inhomogeneous equation of the Burgers type is derived as a model equation for the long time evolution of the surface waves, when the shear stress on the free surface and the deviation of the uneven bottom from an inclined plane are prescribed. A soliton-like wave and a shock-like front generated ahead of or behind a moving source on the free surface are discovered.  相似文献   

17.
应用势流理论中的Rankine源面元法和时域步进法,求解了有限水深船舶在规则波中运动的水底压力变化。将速度势分解成基本势、局部势和记忆势,以叠模解作为基本势对自由表面条件和物面条件进行了线性化,通过在水底布置面元来满足水底条件。利用研制的水底压力-水面波浪测量系统,测量了不同入射波船模表面波形与水底压力的时历曲线,理论计算与实验结果符合较好,验证了自编程序的正确性。通过对比二者的等高线图发现,水底压力与表面波形的峰谷有较好的一致性,并且压力较波形更为平滑。  相似文献   

18.
Using the method of matched asymptotic expansions, an analytical solution of the balance equation for turbulence energy is constructed for a shallow basin (sea) in which the fluid depth does not exceed the Stokes layer thickness. In this case, a gradient-viscous balance is established with the turbulent viscosity being balanced mainly by the pressure gradient. It is shown that nonlinear boundary layers attributable to turbulence energy diffusion are formed near the bottom and the free surface (or ice). In the neighborhood of the point of maximum flow velocity (if this maximum is attained inside the flow), a nonlinear internal boundary layer also develops. Outside these layers, the turbulence energy generation is in the first approximation balanced by the energy dissipation. Asymptotic solutions for the boundary layers are constructed.  相似文献   

19.
The present study deals with the hydroelastic analysis of gravity wave interaction with concentric porous and flexible cylinder systems, in which the inner cylinder is rigid and the outer cylinder is porous and flexible. The problems are analyzed in finite water depth under the assumption of small amplitude water wave theory and structural response. The cylinder configurations in the present study are namely (a) surface-piercing truncated cylinders, (b) bottom-touching truncated cylinders and (c) complete submerged cylinders extended from free surface to bottom. As special cases of the concentric cylinder system, wave diffraction by (i) porous flexible cylinder and (ii) flexible floating cage with rigid bottom are analyzed. The scattering potentials are evaluated using Fourier–Bessel series expansion method and the least square approximation method. The convergence of the double series is tested numerically to determine the number of terms in the Fourier–Bessel series expansion. The effects of porosity and flexibility of the outer cylinder, in attenuating the hydrodynamic forces and dynamic overturning moments, are analyzed for various cylinder configurations and wave characteristics. A parametric study with respect to wave frequency, ratios of inner-to-outer cylinder radii, annular spacing between the two cylinders and porosities is done. In order to understand the flow distribution around the cylinders, contour plots are provided. The findings of the present study are likely to be of immense help in the design of various types of marine structures which can withstand the wave loads of varied nature in the marine environment. The theory can be easily extended to deal with a large class of problems associated with acoustic wave interaction with flexible porous structures.  相似文献   

20.
Using linear water wave theory, we consider a three-dimensional problem involving the interaction of waves with a sphere in a fluid consisting of two layers with the upper layer and lower layer bounded above and below, respectively, by rigid horizontal walls, which are approximations of the free surface and the bottom surface; these walls can be assumed to constitute a channel. The effects of surface tension at the surface of separation is neglected. For such a situation time-harmonic waves propagate with one wave number only, unlike the case when one of the layers is of infinite depth with the waves propagating with two wave numbers. Method of multipole expansions is used to find the particular solutions for the problems of wave radiation and scattering by a submerged sphere placed in either of the upper or lower layer. The added-mass and damping coefficients for heave and sway motions are derived and plotted against various values of the wave number. Similarly the exciting forces due to heave and sway motions are evaluated and presented graphically. The features of the results find good agreement with previously available results from the point of view of physical interpretation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号