首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2 laser-induced pyrolysis of silane in a flow reactor, based on scattering of He-Ne laser light by a particulate in the reaction flame. The scattering and extinction measurements have been used to measure nucleation and growth kinetics of silicon powders within the reaction zone. The experience gained by this technique allowed synthesis of silicon particles with a wide size range. Received: 29 April 1998/Accepted: 30 April 1998  相似文献   

2.
Using the DFT-B3LYP calculations we investigate the adsorption of Li atom on CNT, BNNT, AlNNT and SiCNT. We found that Li atom can be chemisorbed on zig-zag SiCNT with binding energy of −2.358 eV and charge transfer of 0.842 |e|, which are larger than the results of other nanotubes. The binding energy of Li on SiCNT is foun to be stronger than activation energy barrier indicating that Li metal could be well dispersed on SiCNTs. Furthermore, the average voltage caused by the lithium adsorption on SiCNT demonstrated that SiCNTs could exhibit as a stable anode similar to the lithium metal anode. The binding nature has been rationalized by analyzing the electronic structures. Our findings demonstrate that Li-BNNT, Li-SiCNT and Li-AlNNT systems exhibit spin polarized behaviors and can fascinating potential application in future spintronics. Also, Li-SiCNT system with rather small band gap might be a promising material for optical applications and active molecule in its environment.  相似文献   

3.
4.
The paper reports on both the characteristics of ultrafine silicon nitride powder produced by plasma synthesis and the microstructure and properties of the relative sintered material. The powder, already containing yttria and alumina as sintering aids, has a bimodal particle size distribution and it is partly amorphous. The chemical composition and morphology of the particles are shown. Yttria and alumina were not found in separate particles but the elements constituting them (i.e., Y, Al, O) are either in solid solutions in the crystalline particles or dispersed within the amorphous portion of the powder. Dense materials were obtained by pressureless sintering at 1750 °C. Microstructure and composition of silicon nitride grains and of grain boundary phases are analyzed and discussed. When compared to a micro-sized Si3N4, nanoindentation tests clearly revealed the inverse Hall Petch relation. The nanosize Si3N4 shows a Young’s modulus which is almost independent on the peak load. PACS 81.05.J,M; 81.40; 81.05.Y; 81.05.J; 46.30.P  相似文献   

5.
Silicon nitride and oxynitride films have been deposited on silicon wafers using plasma-enhanced chemical vapour deposition. Various amounts of ammonia, silane and nitrous oxide gases were applied at fixed total gas flow and at the same deposition temperature. The dependence of the macroscopic properties of the layers such as refractive index, internal stress and etch rate on the reaction atmosphere during deposition has been demonstrated. The chemical structure of amorphous layers was studied using infrared spectroscopy. The network was found to be characterised by SiNxOyHz tetrahedra, joined to each other by common corners. The characteristic vibrational bands due to species that join tetrahedral units (N(-Si≡)3, ≡Si-N-Si≡, ≡Si-O-Si≡) and species that stop this interconnection (Si-H, N-H) were determined and discussed with reference to the corresponding species available during deposition. The analysis resulted in the determination of the relationship between the chemical structure of the network and the layer’s refractive index, internal stress and etch rate. Received: 24 July 2000 / Accepted: 30 May 2001 / Published online: 30 August 2001  相似文献   

6.
Recent positron lifetime and doppler broadening results on silicon, diamond and silicon carbide are presented in this contribution. In as-grown Czochralski Si ingols vacancies are found to be retained after growth at concentrations typically around 3×1016/cm3. 10 MeV eleciron irradiation of variously doped Si wafers shows that only high doping concentrations well in excess of the interstitial oxygen concentration causes an increase in the amount of monovacancies retained.In porous silicon very long-lived positronium lifetimes in the range 40–90 ns are found. Polycrystalline diamond films contain various types of vacancy agglomerates but these are found to be inhomogeneously distributed from crystallite to crystallite. Electron irradiation of silicon carbide results in two vacancy-related lifetimes which are interpreted as resulting from carbon and silicon vacancies.Paper presented at the 132nd WE-Heraeus-Seminar on Positron Studies of Semiconductor Defects, Halle, Germany, 29 August to 2 September 1994  相似文献   

7.
Photoluminescent (PL) p-type 6H porous silicon carbides (PSCs), which showed a strong blue-green photoluminescence band centered at approximately 490 nm, were annealed in Ar and vacuum conditions. The morphological, optical, and chemical states after annealing are reported on electrochemically etched SiC semiconductors.The thermal treatments in the Ar and vacuum environments showed different trends in the PL spectra of the PSC. In particular, in the case of annealing in a vacuum, the PL spectra showed both a weak red PL peak near 630 nm and a relatively intense PL peak at around 430 nm in the violet region. SEM images showed that the etched surface had spherical nanostructures, mesostructures, and islands. With increasing annealing temperature it changes all spherical nanostructures. The average pore size observed at the surface of the PSC before annealing was of the order of approximately 10 nm.In order to investigate the surface of a series of samples in detail, both the detection of a particular chemical species and the electronic environments at the surface are examined using X-ray photoelectron spectroscopy (XPS). The chemical states from each XPS spectrum depend differently before and after annealing the surface at various temperatures. From these results, the PL spectra could be attributed not only to the quantum size effects but also to the oxide state.  相似文献   

8.
Thin films of silicon oxynitride have largely replaced pure silicon oxide films as gate and tunnel oxide films in modern technology due to their superior properties in terms of efficiency as boron barrier, resistance to electrical stress and high dielectric strength. A single chamber system for plasma enhanced chemical vapor deposition was employed to deposit different films of SiOxNyHz with 0.85 < x < 1.91. All films were previously characterized by Rutherford back-scattering and infrared spectroscopy to determine the stoichiometry and the presence of various bonding configurations of constituent atoms. We used X-ray reflectivity to determine the electron density profile across the depth, and we showed that the top layer is densified. Moreover, grazing incidence small-angle X-ray scattering was used to study inhomogeneities (clustering) in the films, and it is shown that plate-like inhomogeneities exist in the top and sphere-like particles at the bottom part of the film. Their shape and size depend on the stoichiometry of the films.  相似文献   

9.
The polycrystalline perovskitelike manganese oxides La1-xAxMnO (A = Na, and K, ) have been fabricated by sol-gel technique. For all the compositions explored in this work, the average manganese oxidation state is practically constant, at for A = Na, and for A = K, respectively. A close relationship is confirmed to hold between the Curie temperature (Tc) and the bond distance of Mn-O. Results of magnetic measurements show that these materials can be utilized as suitable candidates for magnetic refrigerants with wide applied temperature span, for their significant entropy change and the easily tuned Curie temperature. Received: 12 September 1997 / Revised: 18 December 1997 / Accepted: 21 January 1998  相似文献   

10.
Discharge behavior of large-aperture (10–70 cm) CO2 lasers is computed using a coupled particle kinetics-equivalent circuit model. Pulsed power systems that produce a single excitation pulse are only able to satisfy the preionization, ignition, and impedance matching conditions for interelectrode gaps 40–50 cm. Double-pulse systems are required for larger gaps, not only to optimize electrical efficiency, but to avoid oscillatory behavior which can lead to arc formation during the second cycle.  相似文献   

11.
At 300 K, an amorphous Al-oxide film is formed on NiAl(001) upon oxygen adsorption. Annealing of the oxygen-saturated NiAl(001) surface to 1200 K leads to the formation of thin well-ordered θ-Al2O3 films. At 300 K, and low-exposure oxygen atoms are chemisorbed on CoGa(001) on defects and on step edges of the terraces. For higher exposure up to saturation, the adsorption of oxygen leads to the formation of an amorphous Ga-oxide film. The EEL spectrum of the amorphous film exhibits two losses at ≈400 and 690 cm-1. After annealing the amorphous Ga-oxide films to 550 K thin, well-ordered β-Ga2O3 films are formed on top of the CoGa(001) surface. The EEL spectrum of the β-Ga2O3 films show strong Fuchs-Kliewer (FK) modes at 305, 455, 645, and 785 cm-1. The β-Ga2O3 films are well ordered and show (2×1) LEED pattern with two domains, oriented perpendicular to each other. The STM study confirms the two domains structure and allows the determination of the two-dimensional lattice parameters of β-Ga2O3. The vibrational properties and the structure of β-Ga2O3 on CoGa(001) and θ-Al2O3 on NiAl(001) are very similar. Ammonia adsorption at 80 K on NiAl(111) and NiAl(001) and subsequent thermal decomposition at elevated temperatures leads to the formation of AlN. Well-ordered and homogeneous AlN thin films can be prepared by several cycles of ammonia adsorption and annealing to 1250 K. The films render a distinct LEED pattern with hexagonal [AlN/NiAl(111)] or pseudo-twelve-fold [AlN/NiAl(001)] symmetry. The lattice constant of the grown AlN film is determined to be aAlN= 3.11 Å. EEL spectra of AlN films show a FK phonon at 865 cm-1. The electronic gap is determined to be Eg= 6.1±0.2 eV. GaN films are prepared by using the same procedure on the (001) and (111) surfaces of CoGa. The films are characterized by a FK phonon at 695 cm-1 and an electronic band gap Eg= 3.5±0.2 eV. NO adsorption at 75 K on NiAl(001) and subsequent annealing to 1200 K leads to the formation of aluminium oxynitride (AlON). An oxygen to nitrogen atomic ratio of ≈2:1 was estimated from the analysis of AES spectra. The AlON films shows a distinct (2×1) LEED pattern and the EEL spectrum exhibits characteristic Fuchs-Kliewer modes. The energy gap is determined to be Eg= 6.6±0.2 eV. The structure of the AlON film is derived from that of θ-Al2O3 formed on NiAl(001). Received: 21 March 1997/Accepted: 12 August 1997  相似文献   

12.
Vibrational (infrared and Raman) spectroscopy has been used to characterize SiOxNy and SiOx films prepared by magnetron sputtering on steel and silicon substrates. Interference bands in the infrared reflectivity measurements provided the film thickness and the dielectric function of the films. Vibrational modes bands were obtained both from infrared and Raman spectra providing useful information on the bonding structure and the microstructure (formation of nano-voids in some coatings) for these amorphous (or nanocrystalline) coatings. X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) analysis have also been carried out to determine the composition and texture of the films, and to correlate these data with the vibrational spectroscopy studies. The angular dependence of the reflectivity spectra provides the dispersion of vibrational and interference polaritons modes, what allows to separate these two types of bands especially in the frequency regions where overlaps/resonances occurred. Finally the attenuated total reflection Fourier transform infrared measurements have been also carried out demonstrating the feasibility and high sensitivity of the technique. Comparison of the spectra of the SiOxNy films prepared in various conditions demonstrates how films can be prepared from pure silicon oxide to silicon oxynitride with reduced oxygen content.  相似文献   

13.
This paper reviews the current knowledge of the properties of ultrathin, well-ordered oxide, nitride and oxynitride films grown on metal and metal alloy surfaces. Different modes of preparation are discussed and the vibrational and structural properties are summarized. The focus will be put onto Al-oxides grown on surfaces of the intermetallic alloys NiAl, Ni3Al and FeAl. The properties of Ga2O3 grown on surfaces of the intermetallic alloy CoGa are also described. In these cases Al- and Ga-atoms, respectively, segregate from the substrate and react with adsorbed oxygen. The grown Al- and Ga-oxide films, respectively, order at elevated temperatures. Systems are also discussed where Al-oxide is grown by oxidation of Al-atoms which are evaporated on surfaces of the transition metals Re and Ru. The growth of transition metal oxides CoO (1 1 1)/Co (0 0 0 1), CoO (1 0 0)/Co (1 1 2 0), NiO (1 0 0)/Ni (1 0 0), NiO/Ni (1 1 1) and Cr2O3/Cr (1 1 0) are also presented. Thin films of Al- and Ga-nitride, respectively, can be grown on the base of the intermetallic alloy NiAl and CoGa by low-temperature adsorption of ammonia. These nitride films order at elevated temperatures. Al- and Ga-oxynitride, respectively, can be grown on surfaces of NiAl and CoGa substrates by adsorption on nitric oxide. An ordering of these ultrathin oxynitride layers is observed at elevated temperatures.  相似文献   

14.
The valence electronic structures of tantalum carbide (TaC) and tantalum nitride (TaN) are studied by using the empirical electronic theory (EET). The results reveal that the bonds of these compounds have covalent, metallic and ionic characters. For a quantitative analysis of the relative strength of these components, their ionicities have been calculated by implanting the results of EET to the PVL model. It has been found that the ionicity of tantalum carbide is smaller than that of tantalum nitride. The EET results also reveal that the covalent electronic number of the strongest bond in the former is larger than that of the latter. All these suggest that the covalent bond of TaC is stronger than that of TaN, which coincides to that deduced from the first-principles method.  相似文献   

15.
Extensive density-functional calculations are performed to understand atomic chemisorption on the TiC(1 1 1) and TiN(1 1 1) surfaces, in particular the calculated pyramid-shaped trends in the adsorption energies for second- and third-period adatoms. Our previously proposed concerted-coupling model for chemisorption on TiC(1 1 1) is tested against new results for adsorption on TiN(1 1 1) and found to apply on this surface as well, thus reflecting both similarities and differences in electronic structure between the two compounds.  相似文献   

16.
Spatial distributions of rotational temperatures and molecular number densities of C2H2 and H2 were measured with CARS during the production of ultrafine SiC powders in a laser pyrolytic process flame. By means of a CO2 laser, the reaction gases SiH4 and C2H2 (or alternatively C2H4) are converted into SiC and H2. From the CARS measurements temperature gradients are determined between 8.8 × 105 K/m and 1.6 × 106 K/m with corresponding heating rates of 1.8 × 106 K/s and 1.3 × 106 K/s. The CARS data also allow an estimation of the gas expansion behaviour in the reaction zone. Moreover, they show that diffusive velocity components of the hydrogen in the hot reaction zone do not exceed 0.4 m/s.  相似文献   

17.
E.-S. Oh 《哲学杂志》2013,93(3):427-440
This paper extends the thermodynamic behaviour of two-dimensional and simple three-dimensional crystalline solids developed by Oh et al. and Slattery and Lagoudas to more complex, multicomponent, three-dimensional, elastic, crystalline solids. The analysis recognizes that the Helmholtz free energy is an explicit function of the lattice vectors defining the crystalline structure. From this theory, we obtain the stress-deformation behaviour and the elastic properties of diamond, silicon, and silicon carbide, which are face-centred, cubic, crystal structure. These are compared with available experimental values.  相似文献   

18.
The native point defects and mechanism of accommodating deviations from stoichiometry of Si2N2O crystal have been investigated using atomistic simulation techniques. This work firstly provides a reliable classical interatomic potential model derived from density functional theory calculations. The force-field parameters well reproduce the crystal structure, elastic stiffness, and dielectric constants of Si2N2O. It is expected that the force-field parameters are useful in future investigations on Si2N2O by molecular dynamic simulation. The calculated formation energies for native defects suggest that intrinsic disorder in stoichiometric Si2N2O is dominated by antisites and a degree of oxygen Frenkel defect may also exist in this system. In nonstoichiometric Si2N2O, the calculated reaction energies indicate that excess SiO2 or Si3N4 is most likely accommodated by the formation of antisite in the lattice. And we also find that SiO2 excess is energetically more favorable than Si3N4 surplus in Si2N2O.  相似文献   

19.
20.
The 440-nm violet-degraded 2Σ → 2Π bands of SiN, which were previously assigned to a “K” → A system, have been reanalyzed. These bands are shown to be Δv = 0, ±1 sequence bands of the B2Σ+A2Π system of SiN. The first reliable value of Te(A2Π) = 994.4(1) cm?1 has been obtained, and this determines the location of the D2Π and L2Π states with respect to the ground state. The B2Σ+, v = 7 and D2Π, v = 3 levels are shown to be mutually perturbing. A detailed study has been made of the perturbed X2Σ+, v = 8 level. The 6–8 band of the BX system has been photographed at high resolution. A deperturbation of this band confirms Te(A2Π), and provides the first experimental verification of the inverted nature of the A state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号