首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antimony(V) is volatilized by reaction with potassium bromide in concentrated sulfuric acid media. After volatilization, the gases can be transported to an inductively coupled plasma spectrometer for atomic emission of antimony and its analytical determination. The influent factors, concentrated sulfuric acid volume, concentration and volume of the potassium bromide aqueous solution and carrier gas flow were investigated and optimized using different alternatives. A detection limit of 48 ng ml−1 of Sb was achieved under the optimized conditions with a precision of 7.6% and the calibration graph was linear from 0.10 to 10.0 μg ml−1 for a sample injection of 130 μl.The study of interferences from common cations and anions revealed a good tolerance for most ions, although there was a significant improvement in Sb(V) volatility when As(III) was present. Furthermore, the As(III) sensitization was only produced with Sb(V) species, while the volatility of the Sb(III) bromide species was unaltered.The method was applied to the determination of Sb in real river waters. The results were checked using alternative atomic spectroscopy methods.  相似文献   

2.
We report on a simple, sensitive and reliable method for the cloud point extraction of antimony (Sb) and its subsequent spectrophotometric detection. It is based on the color reaction of Sb (III) with iodide in acidic medium and subsequent micelle-mediated extraction of tetraiodoantimonate using a non-ionic surfactant in the absence of any chelating agent. The effects of reaction and extraction parameters were optimized. The calibration plot is linear in the range of 0.80–95?ng?mL?1 of antimony in the sample solution, with a regression coefficient (r) of 0.9994 (for n?=?9). The detection limit (at SNR?=?3) is 0.23?ng?mL?1, and the relative standard deviations at 10 and 70?ng?mL?1 of antimony are 3.32 and 1.85?% (at n?=?8), respectively. The method compared favorably to other methods and was applied to determine antimony in seawater, anti-leishmania drug (glucantime), and human serum.
Figure
This method is based on the extraction of yellow iodoantimonous acid (HSbI4) into surfactant-rich phase of Triton X-114 when trivalent antimony in sulfuric acid solution is treated with an excess of potassium iodide solution.  相似文献   

3.
A simple and sensitive method has been developed for the direct determination of toxic species of antimony in mushroom samples by hydride generation atomic fluorescence spectrometry (HG AFS). The determination of Sb(III) and Sb(V) was based on the efficiency of hydride generation employing NaBH4, with and without a previous KI reduction, using proportional equations corresponding to the two different measurement conditions. The extraction efficiency of total antimony and the stability of Sb(III) and Sb(V) in different extraction media (nitric, sulfuric, hydrochloric, acetic acid, methanol and ethanol) were evaluated. Results demonstrated that, based on the extraction yield and the stability of extracts, 0.5 mol L− 1 H2SO4 proved to be the best extracting solution for the speciation analysis of antimony in mushroom samples. The limits of detection of the developed methodology were 0.6 and 1.1 ng g− 1 for Sb(III) and Sb(V), respectively. The relative standard derivation was 3.8% (14.7 ng g− 1) for Sb(V) and 5.1% (4.6 ng g− 1) for Sb(III). The recovery values obtained for Sb(III) and Sb(V) varied from 94 to 106% and from 98 to 105%, respectively. The method has been applied to determine Sb(III), Sb(V) and total Sb in five different mushroom samples; the Sb(III) content varied from 4.6 to 11.4 ng g− 1 and Sb(V) from 14.7 to 21.2 ng g− 1. The accuracy of the method was confirmed by the analysis of a certified reference material of tomato leaves.  相似文献   

4.
A simple, rapid and sensitive method is described for the determination of trace concentrations of antimony by inductively-coupled plasma atomic emission spectrometry with hydride generation. Hydrochloric acid (1 M) is the best medium for stibine generation, but antimony(III) is also effectively reduced to stibine in 1 M malic acid or 0.5 M tartaric acid, whereas antimony(V) gives no significant signal in either of these acids. This permits the differential determination of Sb(III) and Sb(V). Most of the inter-element interference effects can be minimized by thiourea, bur standard additions are recommended for accurate determinations. Thiourea is also effective in prereducing Sb(V) to Sb(III). The detection limit is 0.19 ng Sb ml?1 and the calibration graph is linear up to 100 μg ml?1. The r.s.d, at 1 and 100 ng Sb ml?1 are 3.8 and 2.1%, respectively. The method is applied to copper metal and to speciation of antimony in waste water.  相似文献   

5.
Antimony(III) and antimony(V) species have been selectively determined in liver tissues by optimizing the acidic conditions for the evolution of stibine using the reduction with sodium borohydride. The results show that a response for Sb(III) of 0.5 to 20 microg l(-1) was selectively obtained from samples in a 1 mol l(-1) acetic acid medium. The best response for total antimony from 1 to 20 microg l(-1) is obtained after sample treatment with a 0.5 mol l(-1) sulfuric acid and 10% w/v potassium iodide. Microwave digestion has been necessary to release quantitatively antimony species from sample slurries. The amount of Sb(V) was calculated from the difference between the value for total antimony and Sb(III) concentrations. A relative standard deviation from 2.9 to 3.1% and a detection limit of 0.15 and 0.10 microg l(-1) for Sb(III) and total Sb has been obtained. The average accuracy exceeded 95% in all cases comparing the results obtained from recovery studies, electrothermal atomic absorption spectrometry and the analysis of certified reference materials.  相似文献   

6.
An analytical method was developed for antimony speciation and antimony(III) preconcentration in water samples. The method is based on the selective retention of Sb(III) by modified Saccharomyces cerevisiae in the presence of Sb(V). Heat, caustic and solvent pretreatments of the biomass were investigated to improve the kinetics and thermodynamics of Sb(III) uptake process at room temperature. Heating for 30 min at 80 degrees C was defined as the optimal treatment. Antimony accumulation by the cells was independent of pH (5-10) and ionic strength (0.01-0.1 mol L(-1)). 140 mg of yeast and 2h of contact were necessary to ensure quantitative sequestration of Sb(III) up to 750 microg L(-1). In these conditions, Sb(V) was not retained. Sb(V) was quantified in sorption supernatant by inductively coupled plasma mass spectrometry (ICP-MS) or inductively coupled plasma optical emission spectrometry (ICP-OES). Sb(III) was determined after elution with 40 mmol L(-1) thioglycolic acid at pH 10. A preconcentration factor close to nine was achieved for Sb(III) when 100mL of sample was processed. After preconcentration, the detection limits for Sb(III) and Sb(V) were 2 and 5 ng L(-1), respectively, using ICP-MS, 7 and 0.9 microg L(-1) using ICP-OES. The proposed method was successfully applied to the determination of Sb(III) and Sb(V) in spiked river and mineral water samples. The relative standard deviations (n=3) were in the 2-5% range at the tenth microg L(-1) level and less than 10% at the lowest Sb(III) and Sb(V) tested concentration (0.1 microg L(-1)). Corrected recoveries were in all cases close to 100%.  相似文献   

7.
A new analytical procedure for the speciation of antimony in liver tissues is presented here. For this purpose, a flow injection system has been developed for the treatment of samples and the determination of antimony by hydride generation - atomic absorption spectrometry. The method involves the sequential and the on-line extraction of antimony(III) and antimony(V) from solid lyophilized blood and hamsters liver tissues, with 1.5 mol l(-1) acetic acid and 0.5 mol l(-1) sulfuric acid for Sb(III) and Sb(V), respectively. Reduction of Sb(V) to Sb(III) for stibine generation is effected by the on-line pre-reduction with l-cysteine. The linear ranges were 2.5-20 and 1.0-25 mug l(-1) of Sb(III) and Sb(V), respectively. The detection limits (3sigma) were 1.0 mug l(-1) for Sb(III) and 0.5 mug l(-1) for Sb(V). The relative standard deviation values for fifteen independent measurements were 2.1 and 1.8% for Sb(III) and Sb(V), respectively. The recovery studies performed with samples of cattle liver provided results from 98 to 100% for Sb(III) and from 100 to 103% for Sb(V) for samples spiked with single species. For samples spiked with both Sb(III) and Sb(V), the recovery varied from 97 to 103% for Sb(III) and from 101 to 103% for Sb(V).  相似文献   

8.
A novel absorbent was prepared by dimercaptosuccinic acid chemically modifying mesoporous titanium dioxide and was employed as the micro-column packing material for simultaneous separation/preconcentration of inorganic arsenic and antimony species. It was found that both trivalent and pentavalent of inorganic As and Sb species could be adsorbed quantitatively on dimercaptosuccinic acid modified TiO2 within a pH range of 4–7, and only As(III) and Sb(III) could be quantitatively retained on the micro-column within a pH range of 10–11 while As(V) and Sb(V) were passed through the micro-column without the retention. Based on this fact, a new method of flow injection on-line micro-column separation/preconcentration coupled to inductively coupled plasma optical emission spectrometry was developed for simultaneous speciation of trace inorganic arsenic and antimony in natural waters. Under the optimized conditions, an enrichment factor of 10 and sampling frequency of 10 h− 1 were obtained with on-line mode. The detection limits of As(III), As(V), Sb(III), and Sb(V) are 0.53, 0.49, 0.77 and 0.71 ng mL− 1 for on-line mode and as low as 0.11, 0.10, 0.15 and 0.13 ng mL− 1 for off-line mode due to its higher enrichment factor (50), respectively. The relative standard deviations of two modes are less than 6.7% (C = 20 ng mL− 1, n = 7). The concentration ratio of lower oxidation states/higher oxidation states changing from 1:10 to 10:1 has no obvious effect on the recoveries of As(III) and Sb(III). In order to validate the developed method, two certified reference materials of GSBZ5004-88 and GBW(E)080545 water sample were analyzed and the determined values are in good agreement with the certified values. The proposed method was successfully applied to the simultaneous speciation of inorganic arsenic and antimony in natural waters.  相似文献   

9.
A sensitive spectrophotometric method is described for the determination of antimony in copper and lead metals and in lead-base alloy. Optimal conditions have been established for the extraction and determination of antimony. Antimony (III) is extracted from a potassium iodide—sulfuric acid or a hydrobromic—sulfuric acid medium with toluene and converted to an antimony-pyrocatechol violet (PV) complex. The complex is then extracted with tri-n-octylamine (TOA) and the absorbance of the resulting ternary Sb(III)—PV-TOA complex is measured at 555 nm. As little as 0.5 p.p.m. of antimony in copper metal and 0.2 p.p.m. of antimony in lead metal and lead-base alloy can be determined.  相似文献   

10.
A sensitive and simple method for flame atomic absorption spectrometry (FAAS) determination of antimony species after separation/preconcentration by cloud point extraction (CPE) has been developed. When the system temperature is higher than the cloud point extraction temperature, the complex of antimony (III) with N-benzoyl-N-phenyhydroxylamine (BPHA) can enter the surfactant-rich phase, whereas the antimony (V) remains in the aqueous phase. Antimony (III) in surfactant-rich phase was analyzed by FAAS and antimony (V) was calculated by subtracting of antimony (III) from the total antimony after reducing antimony (V) to antimony (III) by L-cysteine. The main factors affecting the cloud point extraction, such as pH, concentration of BPHA and Triton X-114, equilibration temperature and time, were investigated systematically. Under optimized conditions, the detection limits (3σ) were 1.82 ng mL−1 for Sb(III) and 2.08 ng mL−1 for Sb(total), and the relative standard deviations (RSDs) were 2.6% for Sb(III) and 2.2% for Sb(total). The proposed method was applied to the speciation of antimony species in artificial seawater and wastewater, and recoveries in the range of 95.3–106% were obtained by spiking real samples. This technique was validated by means of reference water materials and gave good agreement with certified values.  相似文献   

11.
A coulometric analysis method and an ion-exclusion chromatographic method were developed for the determination of antimony(V) in a large excess of antimony(III). Antimony(V) reacted with potassium iodide in a high concentration hydrochloric acid; the liberated iodine was determined by the standard-addition method using coulometrically generated iodine. Using a Dionex ICE-AS1 ion-exclusion column, antimony(V) was eluted with 40 mmol/L sulfuric acid; on the other hand, antimony(III) was strongly retained on the column. The content, expressed as the amount ratio of antimony(V) to antimony(III), was 0.035% in a 10 g/kg antimony(III) solution prepared from an antimony(III) oxide reagent by the coulometric analysis method and 0.036% in a 1 g/kg antimony(III) solution prepared from the same antimony(III) oxide by the ion-exclusion chromatographic method. The results of both methods were in good agreement with each other. The detection limit of antimony(V) in antimony(III) oxide by the former method was 0.004% of antimony(III), and that by the latter method was 0.002% of antimony(III).  相似文献   

12.
Yu C  Cai Q  Guo ZX  Yang Z  Khoo SB 《The Analyst》2002,127(10):1380-1385
A novel and simple method for inorganic antimony speciation is described based on selective solid phase extraction (SPE) separation of antimony(III) and highly sensitive inductively coupled plasma mass spectrometric (ICP-MS) detection of total antimony and antimony(V) in the aqueous phase of the sample. Non-polar SPE cartridges, such as the Isolute silica-based octyl (C8) sorbent-containing cartridge, selectively retained the Sb(III) complex with ammonium pyrrolidine dithiocarbamate (APDC), while the uncomplexed Sb(V) remained as a free species in the solution and passed through the cartridge. The Sb(III) concentration was calculated as the difference between total antimony and Sb(V) concentrations. The detection limit was 1 ng L(-1) antimony. Factors affecting the separation and detection of antimony species were investigated. Acidification of samples led to partial or complete retention of Sb(V) on C8 cartridge. Foreign ions tending to complex with Sb(III) or APDC did not interfere with the retention behavior of the Sb(III)-APDC complex. This method has been successfully applied to antimony speciation of various types of water samples.  相似文献   

13.
A novel method for prevention of the oxidation of Sb(III) during sample pretreatment, preconcentration of Sb(III) and Sb(V) with nanometer size titanium dioxide (rutile) and speciation analysis of antimony, has been developed. Antimony(III) could be selectively determined by flow injection-hydride generation-atomic absorption spectrometry, coexisting with Sb(V). Trace Sb(III) and Sb(V) were all adsorbed onto 50 m g TiO2 from 500 ml solution at pH 3.0 within 15 min, then eluted by 10 ml of 5 mol/l HCl solution. One eluent was directly used for the analysis of Sb(III); to the other eluent was added 0.5 g KI and 0.2 g thiourea to reduce Sb(V) to Sb(III), then the mixture was used for the determination of total antimony. The antimony(V) content is the mathematical difference of the two concentrations. Detection limits (based on 3sigma of the blank determinations, n=11) of 0.05 ng/ml for Sb(III) and 0.06 ng/ml for Sb(V), were obtained.  相似文献   

14.
Solidified floating organic drop microextraction was applied as a separation/preconcentration step prior to the electrothermal atomic absorption spectrometric (ETAAS) determination of ultra trace of antimony species. The method was based on the formation of an extractable complex between Sb(III) and ammonium pyrrolidinedithiocarbamate at pH ~ 5, while Sb(V) was remained in the aqueous phase. The antimony extracted into 1-undecanol was determined by ETAAS. Total antimony was determined after the reduction of Sb(V) to Sb(III) with potassium iodide and ascorbic acid. The amount of Sb(V) was determined from the difference of concentration of total antimony and Sb(III). Under the optimum conditions an enhancement factor of 437.5 and a detection limit of 5.0 ng L?1for the preconcentration of 25 mL of sample was achieved. The relative standard deviation at 300 ng L?1 of antimony was found to be 3.5 % (n = 6). The proposed method was successfully applied to the determination of antimony in tea, basil and natural water samples.  相似文献   

15.
Speciation analysis of Sb(III) and Sb(V) in a soil sample was performed through extraction and on-line isotope dilution concentration determination after a chromatographic separation. The total Sb concentration found in a through traffic contaminated soil sample was (4.17 μg g−1, 0.3 μg g−1 SD, n=6). It was determined using ICP-MS after soil digestion using the sodium peroxide sintering method. The optimized extraction procedure for speciation analysis was carried out using 100 mmol L−1 citric acid at pH 2.08 by applying an ultrasonic bath for 45 min at room temperature. The effects of citric acid concentration (0–500 mmol L−1), pH (1–6), and temperature (30–60°C) on inorganic antimony species distribution in the examined sample were studied and optimized. The separation of Sb(III) and Sb(V) was achieved using an anion exchange column (PRP-X100) and 10 mmol L−1 EDTA and 1 mmol L−1 phthalic acid at pH 4.5 as a mobile phase. The eluent from the HPLC was mixed with an enriched (94.2%) 123Sb spike solution that was pumped by a peristaltic pump with a constant flow rate (0.5 mL min−1) in a three-way valve. The blend passed directly to the Conikal nebulizer of the ICP-MS. By using the above extraction procedure and methodology, 43.2% Sb(V) (2.9% RSD, n=3) and 6.0% Sb(III) (1.3% RSD, n=3) of total Sb found in the sample could be detected. The detection limits achieved by the proposed method were 20 ng L−1 and 65 ng L−1 for Sb(V) and Sb(III), respectively. The precision, evaluated by using RSD with 100 ng L−1 calibration solutions, was 2.7% and 3.2% (n=6) for Sb(V) and Sb(III), respectively, in aqueous solutions.  相似文献   

16.
A new method for antimony speciation in terrestrial edible vegetables (spinach, onions, and carrots) was developed using HPLC with hydride generation-atomic fluorescence spectrometry. Mechanical agitation and ultrasound were tested as extraction techniques. Different extraction reagents were evaluated and optimal conditions were determined using experimental design methodology, where EDTA (10 mmol/L, pH 2.5) was selected because this chelate solution produced the highest extraction yield and exhibited the best compatibility with the mobile phase. The results demonstrated that EDTA prevents oxidation of Sb(III) to Sb(V) and maintains the stability of antimony species during the entire analytical process. The LOD and precision (RSD values obtained) for Sb(V), Sb(III), and trimethyl Sb(V) were 0.08, 0.07, and 0.9 microg/L and 5.0, 5.2, and 4.7%, respectively, for a 100 microL sample volume. The application of this method to real samples allowed extraction of 50% of total antimony content from spinach, while antimony extracted from carrots and onion samples ranged between 50 and 60 and 54 and 70%, respectively. Only Sb(V) was detected in three roots (onion and spinach) that represented 60-70% of the total antimony in the extracts.  相似文献   

17.
The selective retention of the Sb(III) chelate with ammonium pyrrolidine dithiocarbamate (APDC) on a column of Chromosorb 102 resin from a buffered sample solution including Sb(V) was used for the determination of Sb(III). The retained antimony was eluted with acetone. The retention of the Sb(III)-iodide compounds with sodium iodide on the Chromosorb 102 resin column from the same solution after reducing Sb(V) to Sb(III) by iodide in acidic solution was used to preconcentrate the total antimony. The retained antimony was eluted with 0.25 mol l(-1) HNO3. The antimony in the effluent was determined by flame atomic-absorption spectrometry. Also, the total antimony was determined directly by graphite-furnace atomic absorption spectrometry. The Sb(V) concentration could be calculated by the difference. The recoveries were > or = 95%. The detection limits of a combination of the column procedure and flame AAS for antimony were 6 - 61 microg l(-1) and comparable to 4 microg l(-1) for a direct GFAAS measurement. The relative standard deviations were <6%. The procedure was applied to the determination of Sb(III) and Sb(V) in spiked tap water, waste-water samples and a certified copper metal with the satisfactory results.  相似文献   

18.
A simple procedure is described for the determination of arsenic and antimony in electrolytic copper. The copper is digested with nitric acid and copper is separated from arsenic and antimony by passing an ammoniacal solution of the sample through a column of Chelex-100 resin. After digestion with sulphuric acid and reduction to arsenic(III) and antimony(III) with sodium sulphite in 7 M sulphuric acid at 80°C, both arsenic and antimony are deposited at-0.30V and their total is determined by anodic stripping; antimony is then selectively deposited at -0.05 V for anodic stripping. The lower limits of determination are 56 ng As and 28 ng Sb per gram of copper; relative standard deviations (n = 5) are in the ranges 6.1–15.0% for 5.5—0.5 ppm arsenic in copper and 4.1–6.8% for 2.6—0.6 ppm antimony.  相似文献   

19.
This stability of Sb(III) and Sb(V) species was studied during single extraction from soils by water. EDTA, diluted H2SO4 and H3PO4, and oxalic acid/oxalate solutions, with and without ascorbic acid, were used as stabilizing reagent of both Sb species. Antimony redox speciation in soil extracts was performed by selective hydride generation-atomic fluorescence spectrometry. Simulated extraction procedures (without soil) showed that, except in oxalate medium, Sb(III) was oxidized to Sb(V), and this reaction was avoided with ascorbic acid. Recovery studies from a spiked agricultural soil showed that no oxidation but sorption of Sb(III) occurred during the extraction process in water and H2SO4 medium, and quantitative oxidation in EDTA and oxalate medium. With ascorbic acid, this oxidation was totally avoided in EDTA and partially avoided in oxalate solution. A new sequential extraction procedure was proposed and applied to the fractionation and redox speciation of antimony in agricultural soils, using EDTA + ascorbic acid, pH 7 (available under complexing and moderately reducible conditions); oxalic acid/oxalate + ascorbic acid (extractable in reducible conditions) and HNO3 + HCl + HF (residual fraction). The proposed extraction scheme can provide information about the availability and mobility of antimony redox species in agricultural soils.  相似文献   

20.
The stability of arsenic, selenium, antimony and tellurium species in water and urine (NIST SRM 2670n) as well as in extracts of fish and soil certified reference materials (DORM-2 and NIST SRM 2710) has been investigated. Stability studies were carried out with As(III), As(V), arsenobetaine, monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), phenylarsonic acid (PAA), Se(IV), Se(VI), selenomethionine, Sb(III), Sb(V) and Te(VI). Speciation analysis was performed by on-line coupling of anion exchange high-performance liquid chromatography (HPLC) with inductively coupled plasma mass spectrometry (ICP-MS). Best storage of aqueous mixtures of the examined species was achieved at 3 degrees C whereas at -20 degrees C species transformation especially of selenomethionine and Sb(V) took place and a new selenium species appeared within a period of 30 days. Losses and species transformations during extraction processes were investigated. Extraction of the spiked fish material with methanol/water led to partial conversion of Sb(III), Sb(V) and selenomethionine to two new antimony and one new selenium species. The other arsenic, selenium and tellurium species were almost quantitatively extracted. For soil spiked with MMA, PAA, Se(IV) and Sb(III), recoveries after extraction with water and sulfuric acid (0.01 mol/L) were below 20%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号