首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Presented in this report are two further applications of very elementary formulae of approximate differentiation. The first is a new derivation in a somewhat sharper form of the following theorem of V. M. Olovyani?nikov: LetNn (n ? 2) be the class of functionsg(x) such thatg(x), g′(x),…, g(n)(x) are ? 0, bounded, and nondecreasing on the half-line ?∞ < x ? 0. A special element ofNnis
g1(x) = 0 if ?∞ < x < ?1, g1(x) = (1 + x)nif ?1 ? x ? 0
. Ifg(x) ∈ Nnis such that
g(0) ? g1(0) = 1, g(n)(0) ? g1(n)(0) = n!
, then
g(v)(0) ? g1(v)(0)
for
1v = 1,…, n ? 1
. Moreover, if we have equality in (1) for some value of v, then we have there equality for all v, and this happens only if g(x) = g1(x) in (?∞, 0].The second application gives sufficient conditions for the differentiability of asymptotic expansions (Theorem 4).  相似文献   

2.
For a class C of subsets of a set X, let V(C) be the smallest n such that no n-element set F?X has all its subsets of the form AF, AC. The condition V(C) <+∞ has probabilistic implications. If any two-element subset A of X satisfies both AC = Ø and A ? D for some C, DC, then V(C)=2 if and only if C is linearly ordered by inclusion. If C is of the form C={∩ni=1 Ci:CiCi, i=1,2,…,n}, where each Ci is linearly ordered by inclusion, then V(C)?n+1. If H is an (n-1)-dimensional affine hyperplane in an n-dimensional vector space of real functions on X, and C is the collection of all sets {x: f(x)>0} for f in H, then V(C)=n.  相似文献   

3.
Suppose that e2?|x|V ∈ ReLP(R3) for some p > 2 and for g ∈ R, H(g) = ? Δ + gV, H(g) = ?Δ + gV. The main result, Theorem 3, uses Puiseaux expansions of the eigenvalues and resonances of H(g) to study the behavior of eigenvalues λ(g) as they are absorbed by the continuous spectrum, that is λ(g) ↗6 0 as g ↘5 g0 > 0. We find a series expansion in powers of (g ? g0)12, λ(g) = ∑n = 2 an(g ? g0)n2 whose values for g < g0 correspond to resonances near the origin. These resonances can be viewed as the traces left by the just absorbed eigenvalues.  相似文献   

4.
5.
This paper presents a demonstrably convergent method of feasible directions for solving the problem min{φ(ξ)| gi(ξ)?0i=1,2,…,m}, which approximates, adaptively, both φ(x) and ▽φ(x). These approximations are necessitated by the fact that in certain problems, such as when φ(x) = max{f(x, y) ¦ y ? Ωy}, a precise evaluation of φ(x) and ▽φ(x) is extremely costly. The adaptive procedure progressively refines the precision of the approximations as an optimum is approached and as a result should be much more efficient than fixed precision algorithms.It is outlined how this new algorithm can be used for solving problems of the form miny ? Ωxmaxy ? Ωyf(x, y) under the assumption that Ωmξ={x|gi(x)?0, j=1,…,s} ∩Rn, Ωy={y|ζi(y)?0, i-1,…,t} ∩ Rm, with f, gj, ζi continuously differentiable, f(x, ·) concave, ζi convex for i = 1,…, t, and Ωx, Ωy compact.  相似文献   

6.
We propose a generalization of Heath's theorem that semi-metric spaces with point-countable bases are developable: A semi-metrizable space X is developabale if (and only if) there is on it a σ-discrete family C=?m?NCm of closed sets, interior-preserving over each member C of which is a countable family {Dn(C): n ∈ N} of collections of open sets such that if U is a neighbourhood of ξ∈X, then there are such a Γ∈C and such a v∈ N that ξ ? Γ and ξ∈ int ∩ (D: ξ: DDv(Γ))?U.  相似文献   

7.
We compare assumptions used in [4] in order to study the rate of convergence to 0, as us+(F), of d(u)=supx∈[0,s+(F)?u[|Fu(x)?Gγ(x+u?α(u)σ(u))|, where Fu is the survival function of the excesses over u, s+(F)=sup{x,F(x)<1} is the upper end point of the distribution function (d.f.) F and Gγ is the survival function of the Generalized Pareto Distribution, with assumptions used in [2] in order to study the rate of convergence to 0, as n→+∞, of d?n=supx∈R|Fn(x)?Hγ(x?αnσn)|, where Hγ is the d.f. of an extreme value distribution. In each case, an indicator linked to regular variation assumptions had been introduced. We characterize situations where these two indicators coincide, and others where they are different. To cite this article: R. Worms, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 709–712.  相似文献   

8.
If f is a monotone function subject to certain restrictions, then one can associate with any real number x between zero and one a sequence {an(x)} of integers such that
x=f(a1(x) + f(a2(x) +f(a3(x) +…)))
. In this paper properties of the function F defined by
Fx=g(a1(x) + g(a2(x) +g(a3(x) +…)))
, where g is any function satisfying the same restrictions as f, are discussed. Principally, F is found to be useful in finding stationary measures on the sequences {an(x)}.  相似文献   

9.
We investigate the chromatic polynomial χ(G, λ) of an unlabeled graph G. It is shown that χ(G, λ) = (1|A(g)|) Σπ ∈ A(g) χ(g, π, λ), where g is any labeled version of G, A(g) is the automorphism group of g and χ(g, π, λ) is the chromatic polynomial for colorings of g fixed by π. The above expression shows that χ(G, λ) is a rational polynomial of degree n = |V(G)| with leading coefficient 1|A(g)|. Though χ(G, λ) does not satisfy chromatic reduction, each polynomial χ(g, π, λ) does, thus yielding a simple method for computing χ(G, λ). We also show that the number N(G) of acyclic orientations of G is related to the argument λ = ?1 by the formula N(G) = (1|A(g)|) Σπ ∈ A(g)(?1)s(π) χ(g, π, ?1), where s(π) is the number of cycles of π. This information is used to derive Robinson's (“Combinatorial Mathematics V” (Proc. 5th Austral. Conf. 1976), Lecture Notes in Math. Vol. 622, pp. 28–43, Springer-Verlag, New York/Berlin, 1977) cycle index sum equations for counting unlabeled acyclic digraphs.  相似文献   

10.
Let L be a lattice over the integers of a quaternion algebra with center K which is a B-adic field. Then the unitary group U(L) equals its own commutator subgroup Ω(L) and is generated by the unitary transvections and quasitransvections contained in it. Let g be a tableau, U(g), U+(g), Ω(g), T(g) be the corresponding congruence subgroups of order g. Then U(g)U+(g) ? Xi = 1τZ2, and Ω(g) = T(g) (the subgroup generated by the unitary transvections and quasitransvections with order ≤ g). Let G be a subgroup of U(L) with o(G) = g, then G is normal in U(L) if and only if U(g) ? G ? T(g).  相似文献   

11.
It is known that the classical orthogonal polynomials satisfy inequalities of the form Un2(x) ? Un + 1(x) Un ? 1(x) > 0 when x lies in the spectral interval. These are called Turan inequalities. In this paper we will prove a generalized Turan inequality for ultraspherical and Laguerre polynomials. Specifically if Pnλ(x) and Lnα(x) are the ultraspherical and Laguerre polynomials and Fnλ(x) = Pnλ(x)Pnλ(1), Gnα(x) = Lnα(x)Lnα(0), then Fnα(x) Fnβ(x) ? Fn + 1α(x) Fn ? 1β(x) > 0, ? 1 < x < 1, ?12 < α ? β ? α + 1 and Gnα(x) Gnβ(x) ? Gn + 1α(x) Gn ? 1β(x) > 0, x > 0, 0 < α ? β ? α + 1. We also prove the inequality (n + 1) Fnα(x) Fnβ(x) ? nFn + 1α(x) Fn ? 1β(x) > An[Fnα(x)]2, ?1 < x < 1, ?12 < α ? β < α + 1, where An is a positive constant depending on α and β.  相似文献   

12.
Let {Xn} be a ?-irreducible Markov chain on an arbitrary space. Sufficient conditions are given under which the chain is ergodic or recurrent. These extend known results for chains on a countable state space. In particular, it is shown that if the space is a normed topological space, then under some continuity conditions on the transition probabilities of {Xn} the conditions for ergodicity will be met if there is a compact set K and an ? > 0 such that E {6Xn+16 — 6Xn6 ∣ Xn = x} ? ?? whenever x lies outside K and E{6Xn+16 ∣ Xn=x} is bounded, xK; whilst the conditions for recurrence will be met if there exists a compact K with E {6Xn+16 ? 6Xn6 ∣ Xn = x} ? 0 for all x outside K. An application to queueing theory is given.  相似文献   

13.
A compactificaton αX of a completely regular space X is “determined” by a subset F of C1(X) if αX is the smallest compactificaton of X to which each element of F extends, and is “generated” by F if the evaluation map eF:X →Rn,n = |F|, is an embedding and αX = eF(X). Evidently, if F either determines or generates αX, then every elements of F has an extension to αX; whenever F satisfies this latter condition, the set of all such extensions is denoted Fα.A major results of our previous paper is that F determines αX if and only if Fα separates points of αX ? X. A major result of the present paper is that F generates αX if and only if Fα separates points of αX.  相似文献   

14.
Let Fn(x) be the empirical distribution function based on n independent random variables X1,…,Xn from a common distribution function F(x), and let X = Σi=1nXin be the sample mean. We derive the rate of convergence of Fn(X) to normality (for the regular as well as nonregular cases), a law of iterated logarithm, and an invariance principle for Fn(X).  相似文献   

15.
For certain types of stochastic processes {Xn | n ∈ N}, which are integrable and adapted to a nondecreasing sequence of σ-algebras Fn on a probability space (Ω, F, P), several authors have studied the following problems: IfSdenotes the class of all stopping times for the stochastic basis {Fn | n ∈ N}, when issupsΩ | Xσ | dPfinite, and when is there a stopping time σ for which this supremum is attained? In the present paper we set the problem in a measure theoretic framework. This approach turns out to be fruitful since it reveals the root of the problem: It avoids the use of such notions as probability, null set, integral, and even σ-additivity. It thus allows a considerable generalization of known results, simplifies proofs, and opens the door to further research.  相似文献   

16.
For the Favard class Fr in the space C2π of continuous 2π-periodic functions we solve the following problem. Given x∈R and knots x0< x1 < ··· < xv?1., xu? 2π we determine weights xki(0 ?k · n, 0 ? j < r) such that
supf∈Frf(x)?k=0n?1j=0r?1 αkjf(i)(Xk)
is minimal. The optimal weights are unique (except for a trivial case) and we obtain them from a system of periodic polynomial splines ukj(0 ? k < n, 0 ?j< r): αkj = ukj(x). These splines induce an interpolation operator whose degree of approximation with respect to the class Fr is minimal if the knots are equidistant. Finally, we describe an efficient numerical procedure which shows how to compute the interpolation spline in the equidistant case.  相似文献   

17.
Consider the class of retarded functional differential equations
x(t) = f(xt)
, (1) where xt(θ) = x(t + θ), ?1 ? θ ? 0, so xt?C = C([?1, 0], Rn), and f∈=Cr(C,Rn). Let 2 ? r ? ∞ and give X the appropriate (Whitney) topology. Then the set of f∈ such that all fixed points and all periodic solutions of (1) are hyperbolic is residual in
.  相似文献   

18.
Let V be an n-dimentional unitary space with inner product (·,·) and S the set {xV:(x, x)=1}. For any A∈Hom(V, V) and q∈C with ∣q∣?1, we define
W(A:q)={(Ax, y):x, y∈S, (x, y)=q}
. If q=1, then W(A:q) is just the classical numerical range {(Ax, x):xS}, the convexity of which is well known. Another generalization of the numerical range is the C-numerical range, which is defined to be the set
WC(A)={tr(CU1AU):U unitary}
where C∈Hom(V, V). In this note, we prove that W(A:q) is always convex and that WC(A) is convex for all A if rank C=1 or n=2.  相似文献   

19.
{Xn,n?1} are i.i.d. random variables with continuous d.f. F(x). Xj is a record value of this sequence if Xj>max{X1,…,Xj?1}. Consider the sequence of such record values {XLn,n?1}. Set R(x)=-log(1?F(x)). There exist Bn > 0 such that XLnBn→1. in probability (i.p.) iff XLnR-1(n)→1 i.p. iff {R(kx)?R(x)}R12(kx) → ∞ as x→∞ for all k>1. Similar criteria hold for the existence of constants An such that XLn?An → 0 i.p. Limiting record value distributions are of the form N(-log(-logG(x))) where G(·) is an extreme value distribution and N(·) is the standard normal distribution. Domain of attraction criteria for each of the three types of limit laws can be derived by appealing to a duality theorem relating the limiting record value distributions to the extreme value distributions. Repeated use is made of the following lemma: If P{Xn?x}=1?e-x,x?0, then XLn=Y0+…+Yn where the Yj's are i.i.d. and P{Yj?x}=1?e-x.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号