首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A setS inR dis said to bem-convex,m≧2, if and only if for everym distinct points inS, at least one of the line segments determined by these points lies inS. Clearly any union ofm?1 convex sets ism-convex, yet the converse is false and has inspired some interesting mathematical questions: Under what conditions will anm-convex set be decomposable intom?1 convex sets? And for everym≧2, does there exist aσ(m) such that everym-convex set is a union ofσ(m) convex sets? Pathological examples convince the reader to restrict his attention to closed sets of dimension≦3, and this paper provides answers to the questions above for closed subsets of the plane. IfS is a closedm-convex set in the plane,m ≧ 2, the first question may be answered in one way by the following result: If there is some lineH supportingS at a pointp in the kernel ofS, thenS is a union ofm ? 1 convex sets. Using this result, it is possible to prove several decomposition theorems forS under varying conditions. Finally, an answer to the second question is given: Ifm≧3, thenS is a union of (m?1)32 m?3 or fewer convex sets.  相似文献   

2.
A set S in R is said to be χ-convex if and only if S does not contain a visually independent subset having cardinality χ. It is natural to ask when an χ-convex set may be expressed as a countable union of convex sets. Here it is proved that if S is a closed χ-convex set in the plane and R has at most finitely many bounded components, then S is a countable union of convex sets. A parallel result holds in R when S is a closed χ-convex set which contains all triangular regions whose relative boundaries are in S. However, the result fails for arbitrary χ-convex sets, even in the plane.  相似文献   

3.
Using a Poincaré compactification, the linear homogeneous system of delay equations {x = Ax(t ? 1) (A is an n × n real matrix) induces a delay system π(A) on the sphere Sn. The points at infinity belong to an invariant submanifold Sn ? 1 of Sn. For an open and dense set of 2 × 2 matrices A with distinct eigenvalues, the system π(A) has only hyperbolic critical points (including the critical points at infinity). For an open and dense set of 2 × 2matrices A with complex eigenvalues, the nonwandering set at infinity is the union of an odd number of hyperbolic periodic orbits; if (detA)12 < 2, the restriction of π(A) to S1 is Morse-Smale. For n = 1 there exist periodic orbits of period 4 provided that ?A > π2 and Hopf bifurcation of a center occurs for ?A near (π2) + 2kπ, k ? Z.  相似文献   

4.
This paper deals with anR danalogue of a theorem of Valentine which states that a closed 3-convex setS in the plane is decomposable into 3 or fewer closed convex sets. In Valentine’s proof, the points of local nonconvexity ofS are treated as vertices of a polygonP contained in the kernel ofS, yielding a decomposition ofS into 2 or 3 convex sets, depending on whetherP has an even or odd number of edges. Thus the decomposition actually depends onc(P′), the chromatic number of the polytopeP′ dual toP. A natural analogue of this result is the following theorem: LetS be a closed subset ofR d, and letQ denote the set of points of local nonconvexity ofS. We require thatQ be contained in the kernel ofS and thatQ coincide with the set of points in the union of all the (d − 2)-dimensional faces of somed-dimensional polytopeP. ThenS is decomposable intoc(P′) closed convex sets.  相似文献   

5.
Let S be the Schwartz space of rapidly decreasing real functions. The dual space S1 consists of the tempered distributions and the relation S ? L2(R) ? S1 holds. Let γ be the Gaussian white noise on S1 with the characteristic functional γ(ξ) = exp{?∥ξ∥2/2}, ξ ∈ S, where ∥·∥ is the L2(R)-norm. Let ν be the Poisson white noise on S1 with the characteristic functional ν(ξ) = exp?RR {[exp(iξ(t)u)] ? 1 ? (1 + u2)?1(iξ(t)u)} dη(u)dt), ξ ∈ S, where the Lévy measure is assumed to satisfy the condition ∫Ru2(u) < ∞. It is proved that γ1ν has the same dichotomy property for shifts as the Gaussian white noise, i.e., for any ω ∈ S1, the shift (γ1ν)ω of γ1ν by ω and γ1ν are either equivalent or orthogonal. They are equivalent if and only if when ω ∈ L2(R) and the Radon-Nikodym derivative is derived. It is also proved that for the Poisson white noice νω is orthogonal to ν for any non-zero ω in S1.  相似文献   

6.
A weighted translation semigroup {St} on L2(R+) is defined by (Stf)(x) = (φ(x)φ(x ? t))f(x ? t) for x ? t and 0 otherwise, where φ is a continuous nonzero scalar-valued function on R+. It is shown that {St} is subnormal if and only if φ2 is the product of an exponential function and the Laplace-Stieltjes transform of an increasing function of total variation one. A necessary and sufficient condition for similarity of weighted translation semigroups is developed.  相似文献   

7.
In the first main result the mean (m?n)-dimensional Hausdorff measure of the set of crossing points of a level y ? Rn by an m-dimensional continuous random vector field with values in R n, m?n, is computed. The second one deals with horizontal-window conditional (Palm) distributions for such random fields. For this purpose, a general concept of Palm measures is introduced, which contains both the ‘stationary’ and the ‘nonstationary’ one.  相似文献   

8.
Characterizations of optimality for the abstract convex program μ = inf{p(x) : g(x) ? ?S, x ? Ω} (P) where S is an arbitrary convex cone in a finite dimensional space, Ω is a convex set, and p and g are respectively convex and S-convex (on Ω), were given in [10]. These characterizations hold without any constraint qualification. They use the “minimal cone” Sf of (P) and the cone of directions of constancy Dg= (Sf). In the faithfully convex case these cones can be used to regularize (P), i.e., transform (P) into an equivalent program (Pr) for which Slater's condition holds. We present an algorithm that finds both Sf and Dg=(Sf). The main step of the algorithm consists in solving a particular complementarity problem. We also present a characterization of optimality for (P) in terms of the cone of directions of constancy of a convex functional Dφg= rather than Dg=(Sf).  相似文献   

9.
Let us denote by R(k, ? λ)[R(k, ? λ)] the maximal number M such that there exist M different permutations of the set {1,…, k} such that any two of them have at least λ (at most λ, respectively) common positions. We prove the inequalities R(k, ? λ) ? kR(k ? 1, ? λ ? 1), R(k, ? λ) ? R(k, ? λ ? 1) ? k!, R(k, ? λ) ? kR(k ? 1, ? λ ? 1). We show: R(k, ? k ? 2) = 2, R(k, ? 1) = (k ? 1)!, R(pm, ? 2) = (pm ? 2)!, R(pm + 1, ? 3) = (pm ? 2)!, R(k, ? k ? 3) = k!2, R(k, ? 0) = k, R(pm, ? 1) = pm(pm ? 1), R(pm + 1, ? 2) = (pm + 1)pm(pm ? 1). The exact value of R(k, ? λ) is determined whenever k ? k0(k ? λ); we conjecture that R(k, ? λ) = (k ? λ)! for k ? k0(λ). Bounds for the general case are given and are used to determine that the minimum of |R(k, ? λ) ? R(k, ? λ)| is attained for λ = (k2) + O(klog k).  相似文献   

10.
For a matrix ARn × n, it is shown that strict positive invariance of a proper cone C ? Rn (that is, etAC/{0} ? int C ?t 0) implies the existence of a certain direct sum decomposition of Rn into A-invariant subspaces. Our results lead to a characterization of the set of initial points which give rise to solution curves that reach S, under the differential equation ? = Ax. Also given is an application in stability theory.  相似文献   

11.
Let R = (r1,…, rm) and S = (s1,…, sn) be nonnegative integral vectors, and let U(R, S) denote the class of all m × n matrices of 0's and 1's having row sum vector R and column sum vector S. An invariant position of U(R, S) is a position whose entry is the same for all matrices in U(R, S). The interchange graph G(R, S) is the graph where the vertices are the matrices in U(R, S) and where two matrices are joined by an edge provided they differ by an interchange. We prove that when 1 ≤ rin ? 1 (i = 1,…, m) and 1 ≤ sjm ? 1 (j = 1,…, n), G(R, S) is prime if and only if U(R, S) has no invariant positions.  相似文献   

12.
LetS be a closedm-convex subset of the plane,m≧2,Q the set of points of local nonconvexity ofS, with convQS. If there is some pointp in [(bdryS) ∩ (kerS)] ∼Q, thenS is a union ofm−1 closed convex sets. The result is best possible for everym.  相似文献   

13.
14.
We consider two Gaussian measures P1 and P2 on (C(G), B) with zero expectations and covariance functions R1(x, y) and R2(x, y) respectively, where Rν(x, y) is the Green's function of the Dirichlet problem for some uniformly strongly elliptic differential operator A(ν) of order 2m, m ≥ [d2] + 1, on a bounded domain G in Rd (ν = 1, 2). It is shown that if the order of A(2) ? A(1) is at most 2m ? [d2] ? 1, then P1 and P2 are equivalent, while if the order is greater than 2m ? [d2] ? 1, then P1 and P2 are not always equivalent.  相似文献   

15.
We show that, if (FuX) is a linear system, Ω ? X a convex target set and h: X → R? a convex functional, then, under suitable assumptions, the computation of inf h({y ? F ¦ u(y) ? Ω}) can be reduced to the computation of the infimum of h on certain strips or hyperplanes in F, determined by elements of u1(X1), or of the infima on F of Lagrangians, involving elements of u1(X1). Also, we prove similar results for a convex system (FuX) and the convex cone Ω of all non-positive elements in X.  相似文献   

16.
《Advances in Mathematics》1985,56(3):238-282
Let gn be the Lie algebra gln(C), let S(gn) be the symmetric algebra of gn, and let T(gn) be the tensor algebra of gn. In a recent paper, R. K. Gupta studied certain sequences of representations R = (Rn)n = 1, where Rn is a representation of gn. These sequences have the property that every irreducible representation occurring in S(gn) is in exactly one of these sequences. Fixing f, she considers s(R, f) which is the limit on n of the multiplicity of Rn in Sf(gn), the fth-graded piece of S(gn). She and R. P. Stanley independently showed that the limit s(R, f) exists and is given by an amazingly elegant formula. They call s(R, f) the stable multiplicity of Rn in Sf(gn). In this paper, an entirely different approach is used to extend the above result in several directions. Appropriately defined sequences R for all of the classical Lie algebras gn are studied, and a simple formula for the stable multiplicity m(R), ψ, f, g) of Rn in the ψ-isotypic component of Tf(gn), where ψ is any irreducible character of the symmetric group tSf, is obtained. As in the work of Gupta and Stanley, the expressions for m(R), ψ, f, g) are amazingly simple. Special cases include the stable decomposition of the tensor algebra, the symmetric algebra and the exterior algebra of gn. As a byproduct of our proof, a “stable” decomposition of every isotypic component of T(gn) is obtained. This combinatorial decomposition is in some sense a generalization of Kostant's decomposition of S(gn) into direct sum of the harmonics and the ideal generated by the invariants of positive degree. To be precise, for f <n the combinatorial decomposition of Tf(gn) projects onto Kostant's decomposition of Sf(gn).  相似文献   

17.
For a set K in a locally convex topological vector space X there exists a set T, a σ-algebra S of subsets of T and a σ-additive measure m: SX such that K is the closed convex hull of the range {m(E): ES} of the measure m if and only if there exists a conical measure u on X so that KKu,Ku, the set of resultants of all conical measures v on X such that v < u.  相似文献   

18.
It is shown that the method of Chernoff developed in the preceding paper can be modified to prove the essential self-adjointness on C0(Rm) of all positive powers of the Schrödinger operator T = ? Δ + q if q real and in C(Rm) and if T ? ?a ? b ¦ x ¦2on C0(Rm).  相似文献   

19.
Let Y be an N(μ, Σ) random variable on Rm, 1 ≤ m ≤ ∞, where Σ is positive definite. Let C be a nonempty convex set in Rm with closure C. Let (·,-·) be the Eculidean inner product on Rm, and let μc be the conditional expected value of Y given YC. For vRm and s ≥ 0, let βs(v) be the expected value of |(v, Y) ? (v, μ)|s and let γs(v) be the conditional expected value of |(v, Y) ? (v, μc)|s given YC. For s ≥ 1, γs(v) < βs(v) if and only if C + Σ v ≠ C, and γs(v) < βs(v) for all v ≠ 0 if and only if C + v ≠ C for any vRm such that v ≠ 0.  相似文献   

20.
If m and n are positive integers then let S(m, n) denote the linear space over R whose elements are the real-valued symmetric n-linear functions on Em with operations defined in the usual way. If U is a function from some sphere S in Em to R then let U(i)(x) denote the ith Frechet derivative of U at x. In general U(i)(x)∈S(m,i). In the paper “An Iterative Method for Solving Nonlinear Partial Differential Equations” [Advances in Math. 19 (1976), 245–265] Neuberger presents an iterative procedure for solving a partial differential equation of the form
AUn(x)=F(x, U(x), U′(x),…,Uk(x))
, where k > n, U is the unknown from some sphere in Em to R, A is a linear functional on S(m, n), and F is analytic. The defect in the theory presented there was that in order to prove that the iterates converged to a solution U the condition k ? n2 was needed. In this paper an iteration procedure that is a slight variation on Neuberger's procedure is considered. Although the condition k ? n2 cannot as yet be eliminated, it is shown that in a broad class of cases depending upon the nature of the functional A the restriction k ? n2 may be replaced by the restriction k ? 3n4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号