首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
黄晋  孙其诚 《物理学报》2007,56(10):6124-6131
液态泡沫由大量气泡密集堆积在微量表面活性剂溶液中形成,是远离平衡态的软物质. 泡沫强制渗流在微观上是指以恒定流率输入的液体在气泡间隙内的微流动过程,是影响泡沫稳定的主要因素之一. 采用在表面活性剂溶液中添加微量色素以显示泡沫中液体流动的方法,确定了透射率与液体分率的对应关系,测量得到了一维液态泡沫强制渗流中渗流波传播规律以及液体分率的演变规律;理论推导了泡沫基本单元,即开尔文单元结构(Kelvin cell)的粘性耗散能表达式,并依据Surface Evolver软件计算得到了不同液体分率时开尔文单元结构对应的的表面能,并计算出了与实验系统对应的开尔文单元结构的表面能和粘性耗散. 基于开尔文单元结构内液体分率演变的准静态假设,分析了表面能和粘性耗散的演变规律.  相似文献   

2.
We perform forced-drainage experiments in aqueous foams and compare the results with data available in the literature. We show that all the data can be accurately compared together if the dimensionless permeability of the foam is plotted as a function of liquid fraction. Using this set of coordinates highlights the fact that a large part of the published experimental results corresponds to relatively wet foams ( ∼ 0.1 . Yet, most of the foam drainage models are based on geometrical considerations only valid for dry foams. We therefore discuss the range of validity of the different models in the literature and their comparison to experimental data. We propose extensions of these models considering the geometry of foam in the relatively wet-foam limit. We eventually show that if the foam geometry is correctly described, forced drainage experiments can be understood using a unique parameter --the Boussinesq number.  相似文献   

3.
4.
Experiments are presented elucidating how the evolution of foam microstructure by gas diffusion from high to low pressure bubbles can significantly speed up the rate of gravitational drainage, and vice versa. This includes detailed data on the liquid-fraction dependence of the coarsening rate, and on the liquid-fraction and the bubble-size profiles across a sample. These results can be described by a "coarsening equation" for the increase of bubble growth rate for drier foams. Spatial variation of the average bubble size and liquid fraction can also affect the growth and drainage rates.  相似文献   

5.
Experiments by Gittings, Bandyopadhyay and Durian (Europhys. Lett. 65, 414 (2004)) demonstrate that light possesses a higher probability to propagate in the liquid phase of a foam due to total reflection. The authors term this observation photon channelling which we investigate in this article theoretically. We first derive a central relation in the work of Gitting et al. without any free parameters. It links the photon's path-length fraction f in the liquid phase to the liquid fraction ɛ. We then construct two-dimensional Voronoi foams, replace the cell edges by channels to represent the liquid films and simulate photon paths according to the laws of ray optics using transmission and reflection coefficients from Fresnel's formulas. In an exact honeycomb foam, the photons show superdiffusive behavior. It becomes diffusive as soon as disorder is introduced into the foams. The dependence of the diffusion constant on channel width and refractive index is explained by a one-dimensional random-walk model. It contains a photon channelling state that is crucial for the understanding of the numerical results. At the end, we shortly comment on the observation that photon channelling only occurs in a finite range of ɛ.  相似文献   

6.
We use the Surface Evolver to determine the shear modulus G of a dry 2D foam of 2500 bubbles, using both extensional and simple shear. We examine G for a range of monodisperse, bidisperse and polydisperse foams, and relate it to various measures of the structural disorder of each foam. In all cases, the shear modulus of a foam decreases with increasing disorder.  相似文献   

7.
Foam drainage is considered in a froth flotation cell. Air flow through the foam is described by a simple two-dimensional deceleration flow, modelling the foam spilling over a weir. Foam microstructure is given in terms of the number of channels (Plateau borders) per unit area, which scales as the inverse square of bubble size. The Plateau border number density decreases with height in the foam, and also decreases horizontally as the weir is approached. Foam drainage equations, applicable in the dry foam limit, are described. These can be used to determine the average cross-sectional area of a Plateau border, denoted A, as a function of position in the foam. Quasi-one-dimensional solutions are available in which A only varies vertically, in spite of the two-dimensional nature of the air flow and Plateau border number density fields. For such situations the liquid drainage relative to the air flow is purely vertical. The parametric behaviour of the system is investigated with respect to a number of dimensionless parameters: K (the strength of capillary suction relative to gravity), α (the deceleration of the air flow), and n and h (respectively, the horizontal and vertical variations of the Plateau border number density). The parameter K is small, implying the existence of boundary layer solutions: capillary suction is negligible except in thin layers near the bottom boundary. The boundary layer thickness (when converted back to dimensional variables) is independent of the height of the foam. The deceleration parameter α affects the Plateau border area on the top boundary: weaker decelerations give larger Plateau border areas at the surface. For weak decelerations, there is rapid convergence of the boundary layer solutions at the bottom onto ones with negligible capillary suction higher up. For strong decelerations, two branches of solutions for A are possible in the K = 0 limit: one is smooth, and the other has a distinct kink. The full system, with small but non-zero capillary suction, lies relatively close to the kinked solution branch, but convergence from the lower boundary layer onto this branch is distinctly slow. Variations in the Plateau border number density (non-zero n and h) increase individual Plateau border areas relative to the case of uniformly sized bubbles. For strong decelerations and negligible capillarity, solutions closely follow the kinked solution branch if bubble sizes are only slightly non-uniform. As the extent of non-uniformity increases, the Plateau border area reaches a maximum corresponding to no net upward velocity of foam liquid. In the case of vertical variation of number density, liquid content profiles and Plateau border area profiles cease to be simply proportional to one another. Plateau border areas match at the top of the foam independent of h, implying a considerable difference in liquid content for foams which exhibit different number density profiles. Received 3 July 2001  相似文献   

8.
We compare extensive experimental results for the gravity-driven steady drainage of oil-in-water emulsions with two theoretical predictions, both based on the assumption of Poiseuille flow. The first is from standard foam drainage theory, applicable at low aqueous volume fractions, for which a correction is derived to account for the effects of the confinement of the emulsion. The second arises from considering the permeability of a model porous medium consisting of solid sphere packings, applicable at higher aqueous volume fractions. We find quantitative agreement between experiment and the foam drainage theory at low aqueous volume fractions. At higher aqueous volume fractions, the reduced flow rate calculated from the permeability theory approaches the master curve of the experimental data. Our experimental data demonstrates the analogy between the problem of electrical flow and liquid flow through foams and emulsions.  相似文献   

9.
The foam/emulsion analogy in structure and drainage   总被引:1,自引:0,他引:1  
The often quoted analogy between foams and emulsions is experimentally tested by studying properties after settling and under forced drainage of oil-in-water emulsions of drop size similar as for bubbles generally used in foam experiments. Observations with regard to structure, water fraction and drainage wave properties confirm the expected similarity in the low flow rate range. However, while for foams a convective circulation on the scale of the container sets in for values of water fraction exceeding about 0.2, no such convection is found in emulsions. Here instabilities are only encountered at water fractions of about 0.4, close to the void fraction of random packings of spheres. These take on the form of descending pulses of increased water fraction and lead to the transition from a frozen to a locally agitated structure.Received: 12 December 2003, Published online: 24 August 2004PACS: 82.70.-y Disperse systems; complex fluids - 47.20.-k Hydrodynamic stability - 47.55.Dz Drops and bubbles  相似文献   

10.
A method for geometrical and topological modeling the evolution of close-cell metallic foams based on the Voronoi tessellation in three-dimensional space is presented. Numerical computations were carried out to examine the evolution of the bubble size distribution and topological and geometric properties of aluminum foams in the liquid state, which were implemented by using McPherson’s new theory on coarsening of microstructures as well as the topological transition rules (T1 and T2 processes) in 3D foams, accounting for remarkable effects of both the gas diffusion and surface tension. Computational results show that the bubble size distributions of metallic foams are strongly coupled to the evolution of the cellular structure and dependent on the gas diffusivity and surface tension. The way of foam coarsening can be expressed as RR 32=−mt 2+1 approximately, and gas diffusion between bubbles dominates the evolution of bubble sizes and foam structures. It is found that the average number of faces per bubble is 〈f〉=13.8, which is in good agreement with the values reported in the literature.  相似文献   

11.
We study the two-dimensional flow of foams around a circular obstacle within a long channel. In experiments, we confine the foam between liquid and glass surfaces. In simulations, we use a deterministic software, the Surface Evolver, for bubble details and a stochastic one, the extended Potts model, for statistics. We adopt a coherent definition of liquid fraction for all studied systems. We vary it in both experiments and simulations, and determine the yield drag of the foam, that is, the force exerted on the obstacle by the foam flowing at very low velocity. We find that the yield drag is linear over a large range of the ratio of obstacle to bubble size, and is independent of the channel width over a large range. Decreasing the liquid fraction, however, strongly increases the yield drag; we discuss and interpret this dependence.  相似文献   

12.
We have studied the drainage of foams made from Newtonian and non-Newtonian solutions of different viscosities. Forced-drainage experiments first show that the behavior of Newtonian solutions and of shear-thinning ones (foaming solutions containing either Carbopol or Xanthan) are identical, provided one considers the actual viscosity corresponding to the shear rate found inside the foam. Second, for these fluids, a drainage regime transition occurs as the bulk viscosity is increased, illustrating a coupling between surface and bulk flow in the channels between bubbles. The properties of this transition appear different from the ones observed in previous works in which the interfacial viscoelasticity was varied. Finally, we show that foams made of solutions containing long flexible PolyEthylene Oxide (PEO) molecules counter-intuitively drain faster than foams made with Newtonian solutions of the same viscosity. Complementary experiments made with fluids having all the same viscosity but different responses to elongational stresses (PEO-based Boger fluids) suggest an important role of the elastic properties of the PEO solutions on the faster drainage.  相似文献   

13.
Although extensively studied in the past, drainage of aqueous foams still offers major unaddressed issues. Among them, the behaviour of foam films during drainage has great significance as the thickness of the films is known to control the Ostwald ripening in foams, which in turn impacts liquid drainage. We propose a model relating the films’ behavior to the liquid flow in foam channels. It is assumed that Marangoni-driven recirculation counterflows take place in the transitional region between the foam channel and the adjoining films, and the Gibbs elasticity is therefore introduced as a relevant parameter. The velocity of these counterflows is found to be proportional to the liquid velocity in the channel. The resulting channel permeability is determined and it is shown that Marangoni stresses do not contribute to rigidify the channel’s surfaces, in strong contrast with the drainage of horizontal thin liquid films. New experimental data are provided and support the proposed model.  相似文献   

14.
A liquid foam in contact with a solid surface forms a two-dimensional foam on the surface. We derive the equilibrium equations for this 2D foam when the solid surface is curved and smooth, generalising the standard case of flat Hele-Shaw cells. The equilibrium conditions at the vertices in 2D, at the edges in 3D, are invariant by conformal transformations. Regarding the films, conformal invariance only holds with restrictions, which we explicit for 3D and flat 2D foams. Considering foams confined in thin interstices between two non-parallel plates, normal incidence and Laplace’s law lead to an approximate equation relating the plate profile to the conformal map. Solutions are given for the logarithm and power laws in the case of constant pressure. The paper concludes on a comparison with available experimental data.  相似文献   

15.
We analyze the flow of a liquid foam between two plates separated by a gap of the order of the bubble size (2D foam). We concentrate on the salient features of the flow that are induced by the presence, in an otherwise monodisperse foam, of a single large bubble whose size is one order of magnitude larger than the average size. We describe a model suited for numerical simulations of flows of 2D foams made up of a large number of bubbles. The numerical results are successfully compared to analytical predictions based on scaling arguments and on continuum medium approximations. When the foam is pushed inside the cell at a controlled rate, two basically different regimes occur: a plug flow is observed at low flux whereas, above a threshold, the large bubble migrates faster than the mean flow. The detailed characterization of the relative velocity of the large bubble is the essential aim of the present paper. The relative velocity values, predicted both from numerical and from analytical calculations that are discussed here in great detail, are found to be in fair agreement with experimental results from the preprint Experimental evidence of flow destabilization in a 2D bidisperse foam by the present authors (2005).  相似文献   

16.
We investigate experimentally the linear viscoelastic properties of a lamellar liquid foam as a function of the cell size and spatial organisation. The system consists of multilamellar vesicles generated by a simple shear flow on a lyotropic lamellar phase. The vesicles can be prepared either in an amorphous or a spatially ordered state. Their size is easily tunable in the range R = 0.5-15 μm. Whereas the shear modulus of the amorphous lamellar foam is alike that of usual liquid foams or concentrated emulsions and scales linearly with 1/R, the elastic modulus of the ordered foam is almost independent of the cell size. This result --probably the first describing the elasticity of an ordered foam-like system-- remains unexplained. Received 7 August 2000  相似文献   

17.
18.
We developed the foam drainage rheology technique in order to perform rheological measurements of aqueous foams at a set liquid fraction epsilon and fixed bubble radius R without the usual difficulties associated with fluid drainage and bubble coarsening. The shear stress exhibits a power-law dependence on strain-rate, tau approximately gamma[over]n where n approximately 0.2. The stress exhibits an inverse dependence on liquid content, tau approximately (1+h'epsilon)(-1), where h'=theta(10) exhibits a diminishing logarithmic trend with gamma[over]. We propose a model based upon film shearing as the dominant source of viscous dissipation.  相似文献   

19.
Effects of ultrasound on polymeric foam porosity   总被引:1,自引:0,他引:1  
A variety of materials require functionally graded cellular microstructures whose porosity is engineered to meet specific applications (e.g. mimic bone structure for orthopaedic applications; fulfil mechanical, thermal or acoustic constraints in structural foamed components, etc.). Although a huge variety of foams can be manufactured with homogenous porosity, there are no generic processes for controlling the distribution of porosity within the resulting matrix. Motivated by the desire to create a flexible process for engineering heterogeneous foams, the authors have investigated how ultrasound, applied during the formation of a polyurethane foam, affects its cellular structure. The experimental results demonstrated how the parameters of ultrasound exposure (i.e. frequency and applied power) influenced the volume and distribution of pores within the final polyurethane matrix: the data demonstrates that porosity (i.e. volume fraction) varies in direct proportion to both the acoustic pressure and frequency of the ultrasound signal. The effects of ultrasound on porosity demonstrated by this work offer the prospect of a manufacturing process that can adjust the cellular geometry of foam and hence ensure that the resulting characteristics match the functional requirements.  相似文献   

20.
We report the results of fluid transport experiments in aqueous foams under microgravity. Using optical and electrical methods, the capillary motion of the foam fluid and the local liquid fractions are monitored. We show that foams can be continuously wetted up to high liquid fractions ( approximately 0.3), without any bubble motion instabilities. Data are compared to drainage models: For liquid fractions above 0.2, discrepancies are found and identified. These new results on foam hydrodynamics and structure can be useful for other poroelastic materials, such as plants and biological tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号