首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A first-principles electronic structure calculation for Fe/Cr and V/Cr multilayers is performed, and spin-density wave order in the Cr layer is investigated. It is found that for a sufficiently large spacer thickness of the Cr layer the spin-density wave order grows spontaneously and becomes similar to that in bulk Cr in the vicinity of the middle of the Cr layer.  相似文献   

3.
4.
The temperature dependences of interfacial exchange coupling in Co/semiconductor (SM)/Fe trilayers (SM≡Si or Ge) with different spacer thicknesses are investigated. Only one step is found in the third (not in the first) quadrant of the hysteresis loop of the trilayers with different SM thicknesses, which is ascribed to a larger interfacial coupling strength of Co/CoGe (or Co/CoSi) than of Fe/FeGe (or Fe/FeSi). Furthermore, in comparison with Co/Ge/Fe, a smaller exchange bias field HE and no clear step are observed in Co/Si/Fe, which may originate from the weaker interfacial coupling in this trilayer. The variation of coercivity HC with spacer thickness at low temperatures in Co/Ge/Fe is different from that in Co/Si/Fe, indicating again the important effect of the SM layer in the trilayers.  相似文献   

5.
The adhesion, stability, electronic structure, and bonding of Fe/WC interfaces were studied using first-principles calculations. The preferred stacking sequence is HCP structure that Fe atoms continue the natural stacking sequence of the bulk WC. For two different interfaces with HCP stacking geometry (C-HCP and W-HCP), the work of adhesion of the optimized Fe/WC interfaces are 9.7 J m−2 for C-HCP and 5.1 J m−2 for W-HCP, respectively. The effects of the interface on the electronic structures of both the metal Fe and ceramic WC are mainly localized within the first and second layers of the interface. C-HCP interface has strong covalency and W-HCP interface is dominated by metallic bonds. The magnetic moments of Fe atoms at interface are decreased in both interfaces. Calculations of the interfacial energies provide theoretical evidence for the excellent wear behaviors of Fe/WC composites. Besides, the chemical bonding properties for the interfacial atoms are also discussed in this paper based on Milliken population method.  相似文献   

6.
The antiferromagnetic coupling at the Fe/Cr interfaces, inferred from the orientation of the Cr magnetic moments, is used to estimate the magnetic disorder resulting from the interfacial roughness in Fe/Cr multilayers. A crossover from in-plane to out-of-plane orientation of Cr moments depends on the energy cost in either case: (i) to break the interfacial Fe–Cr antiferromagnetic coupling or (ii) having sites with frustrated Cr–Cr antiferromagnetic coupling in the Cr interlayers. A quantitative model of the magnetic frustration due to interfacial disorder in Fe/Cr multilayer systems is described. The step edge density, or terrace size, required to break the interfacial Fe–Cr coupling and destroy the Fe–Fe interlayer exchange coupling is estimated.  相似文献   

7.
Microwave properties of Fe/Cr multilayer nanostructures with thin chromium layers (with thickness t Cr < 1 nm) are analyzed. Experiments are performed by the method of penetration of microwaves in the frequency range from 26 to 38 GHz. The dependence of the transmission coefficient for microwaves on the constant magnetic field strength exhibits the microwave magnetoresistive effect and magnetic resonance. The resonance spectrum is reconstructed from measurements at various frequencies. The results of microwave measurements are analyzed together with the results of magnetic and magnetoresistive measurements.  相似文献   

8.
We have studied the effect of roughness on the exchanged biased NiFe/FeMn/NiFe trilayers system. The samples were prepared under three different argon working pressures (2, 5 and 10 mTorr) to obtain different roughness degrees. The root mean square roughness of the NiFe/FeMn interfaces enhances as the argon working pressure during the deposition increases from 2 to 10 mTorr. High-angle X-ray diffraction reveals that the samples have 1 1 1 texture and besides, possible changes in grain size could be an extra contribution to the interfacial roughness. Magnetometry measurements have shown that the coervive field enhances as the root mean square roughness of the NiFe/FeMn interfaces increases, while the dependence of the exchange bias field runs in the opposite way.  相似文献   

9.
基于密度泛函理论的第一性原理平面波赝势方法对4种3C-SiC(111)/Mg(0001)界面模型进行研究.界面间距和粘附功的计算表明,结构优化之后的界面模型只在z轴方向发生了移动,界面间距发生了不同程度的缩短;中心型模型的稳定性强于顶位型模型,C终端结构的稳定性强于Si终端结构,中心型C终端的界面模型具有最大的粘附功(2.5834 J/m~2)和最小的界面间距(1.7193?),是4种模型中最稳定的结构. Mulliken电荷、电荷密度分布、差分电荷密度和态密度的计算表明,中心性结构的Si终端和C终端模型界面处存在共价键、离子键和金属键.  相似文献   

10.
The relation between the interlayer exchange coupling and magnetic order is addressed, using Fe/V(0 0 1) superlattices as a model system. Large decrease in the ordering temperature (Tc) is observed with decreasing interlayer exchange coupling. The effective exponents of the magnetization were determined to be larger than 0.5 for all the samples, which is strongly deviating from the classical values of both two- and three-dimensional systems. This effect can partially be ascribed to the presence of boundaries, invoked by the finite number of magnetic layers.  相似文献   

11.
12.
The dependence of the Fe orbital moment on strain and interfaces in Fe/V superlattices has been investigated by X-ray magnetic circular dichroism (XMCD). The orbital moment was determined to be lower at the interfaces than in the bulk, which we attribute to Fe–V hybridization. An enhancement of the orbital moment with increasing strain in the Fe layers was observed. This enhancement is attributed to an unquenching of the orbital moment. Consequently, the orbital moment of Fe in Fe/V is concluded to be influenced by two competing parameters. It is lowered by increasing interface density, and enhanced by increasing strain.  相似文献   

13.
We present field and temperature dependence data on giant magnetoresistive (GMR) ion-beam sputtered Fe-Cr multilayers of varying Cr thickness. We show that the decrease in GMR with temperature is related to the decrease in sublattice magnetization due to thermal excitation of magnons in the antiferromagnetic configuration. The intralayer and the interlayer exchange energies thus obtained vary systematically as the Cr thickness increases. The corresponding decrease in the measured saturation field further supports our interpretation leading to a better understanding of the physics of GMR.  相似文献   

14.
The thickness dependence of different diluted antiferromagnetic Co1−yO layers on the exchange bias (EB) in ferro/antiferromagnetic Co/Co1−yO bilayers is investigated. For undiluted samples the EB decreases above a layer thickness of 5 nm whereas it increases and saturates for AFM layers thicker than 20 nm for diluted samples. These findings support the domain state model for EB.  相似文献   

15.
16.
Spin structures at the ferro/antiferromagnetic interfaces perturbed by defects such as atomic high steps are analytically investigated. A two-dimensional model is proposed to describe the spin distribution formed on the interfacial step at the domain wall. A criterion of the domain wall configuration relative to the interface is found, defined by the magnetic and geometrical characteristics of the interface and the magnet.  相似文献   

17.
The atomic and electronic structures of Me/ZrO2(0 0 1) interfaces, where Me is Ni, Fe or a Ni-Fe alloy, are investigated by the plane wave pseudopotential method within density-functional theory. The work of separation of metal films from oxide substrate for the O- and Zr-terminated Me/ZrO2(0 0 1) interfaces is calculated. High adhesion at both Me/(ZrO2)O and Me/(ZrO2)Zr interfaces is found. The effect of oxygen vacancies on the adhesion at the metal-ceramic interfaces is also investigated. It is shown that Ni(Fe)-O interaction at the O-terminated interface weakens in the presence of interfacial oxygen vacancies. At interfaces with Ni-Fe alloys the adhesion depends strongly on the composition of the interfacial layers and their magnetic properties.  相似文献   

18.
Quaternary Heusler alloys Fe1.5M0.5CoSi with M=V, Cr, Mn and Fe have been investigated theoretically and experimentally. All of these samples crystallize in the ordered Heusler-type structure. The calculated electronic structure shows a pseudogap around EF in the minority spin states of Fe2CoSi. With the substitution of low-valent atoms for Fe, the majority antibonding peak is shifted to higher energy and a minority gap around the Fermi level is opened. High spin polarization ratio is obtained in Fe1.5M0.5CoSi (M=V, Cr, Mn) alloys. The calculated total spin moments decrease with decreasing number of valence electrons and follow the Slater-Pauling curve, which agree with the experimental results well. The Curie temperature decreases as M atom varies from Fe to V, but is always higher than 650 K, which is suitable for technical applications.  相似文献   

19.
In this work, we aim to examine the spin-polarized electronic band structures, the local densities of states as well as the magnetism of Zn1−xTMxSe (TM=Cr, Fe, Co and Ni) diluted magnetic semiconductors in the ferromagnetic (FM) and antiferromagnetic (AFM) phases, and with 25% of TM. The calculations are performed by the developed full-potential augmented plane wave plus local orbitals method within the spin density functional theory. As exchange-correlation potential we used the generalized gradient approximation (GGA) form. We treated the ferromagnetic and antiferromagnetic phases and we found that all compounds are stable in the ferromagnetic structure. Structural properties are computed after total energy minimization. Our results show that the cohesive energies of Zn0.75TM0.25Se are greater than that of zinc blende ZnSe. We discuss the electronic structures, total and partial densities of states, local moments and the p–d exchange splitting. Furthermore, we found that p–d hybridization reduces the local magnetic moment of TM and produces small local magnetic moments on the nonmagnetic Zn and Se sites. We found also that in the AFM phase the TM local magnetic moments are smaller than in the FM phase; this is due to the greater interaction of the TM d-up and d-down orbitals.  相似文献   

20.
Fe/Ce multilayers are magnetically soft with coercive fields of a few Oersteds. In this artificial system, the itinerant 5d electrons of Ce are magnetically polarized by hybridization with the spin–split 3d states of Fe. To obtain an insight into the magnetization reversal process, the element selectivity of X-ray magnetic circular dichroism was used to measure the magnetization of the Ce-5d electrons as a function of an applied magnetic field. Comparison with the magnetization curves studied by the magneto-optic Kerr effect, which averages over the whole system, revealed that the coercivity in the hysteresis of the ordered Ce-5d moments is reduced by 50%. We propose that this is an effect of the magnetically disturbed interface or of the complex non-collinear magnetic structure of the Ce layers detected by recent experiments of X-ray resonant magnetic scattering. The results are compared to the X-ray dichroic and Kerr hysteresis loops of the multilayers Fe/La/Ce/La and Fe/CeH2−δ. These systems are magnetically harder and their coercivities are identical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号