首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
Multilayer hydrogels were prepared by frontal photopolymerization of acrylamide and 2-acrylamido-2-methylpropane sulfonic acid using hydrophilic reactive microgels (HRM) as crosslinkers instead of conventional crosslinkers. The hydrophilic microgels (HM) were prepared by inverse emulsion photopolymerization and then were chemical modified by N-methylolacrylamide (NMA) to obtain HRM with CC double bonds. The HM and HRM was characterized by dynamic light scattering measurements, SEM, TEM and FTIR, respectively. It was found that the resulting multilayer hydrogels showed high fracture strength and high tensile elongation along parallel direction. However their fracture strength and tensile elongation along perpendicular direction was very weak. The swollen multilayer hydrogels were about 1.0–2.0 mm in thickness, the maximal equilibrium swelling degree was only 30.45. The multilayer hydrogels were characterized by DSC, TEM and XRD, respectively. The swelling property and mechanical strength of some typical multilayer hydrogels were studied.  相似文献   

2.
李新松 《高分子科学》2010,28(6):849-857
<正>The interpenetrating polymer network(IPN) silicone hydrogels with improved oxygen permeability and mechanical strength were prepared by UV-initiated polymerization of monomers including methacryloxypropyl tris(trimethylsiloxy)silane(TRIS),2-hydroxyethylmethacrylate(HEMA) and N-vinyl pyrrolidone(NVP) in the presence of free radical photoinitiator and cationic photoinitiator.The polymerization mechanism was investigated by the formation of gel network.The structure of IPN hydrogels was characterized by Fourier transform infrared spectroscopy(FTIR), differential scanning calorimetry(DSC) and transmission electron microscopy(TEM).The results showed that the IPN hydrogels exhibited a heterogeneous morphology.The mechanical properties,surface wettability and oxygen permeability were examined by using a tensile tester,a contact angle goniometer and an oxygen transmission tester,respectively.The equilibrium water content of the hydrogels was measured by the gravimetric method.The results revealed that the IPN hydrogels possessed hydrophilic surface and high water content.They exhibited improved oxygen permeability and mechanical strength because of the incorporation of TRIS.  相似文献   

3.
In this study, new hydrogels in rod shape were prepared from N-acryloyl-tris-(hydroxymethyl)aminomethane (NAT) using three different crosslinking agents: poly(2-methyl-2-oxazoline) bismacromonomer (BM), ethylene glycol dimethacrylate (EGDMA) and N,N′-methylenebisacrylamide (BIS). Dimethylformamide (DMF) was used as solvent and 2,2′-azobisisobutyronitrile (AIBN) as initiator. Polymeric matrices with different properties were obtained by free radical polymerization by changing the crosslinker (BM, EGDMA or BIS) or the concentration of BM. The hydrogel structures were characterized by high resolution magic angle spinning (HRMAS) NMR technique. Swelling experiments and rheological studies were used to test the water absorption capacity and viscoelastic properties of the hydrogels, respectively. For a given NAT/crosslinking agent molar ratio, the hydrogel synthesized with BM displays higher water absorptive capacity and larger range of linear viscoelasticity than those synthesized with BIS or EGDMA. The relatively larger hydrophilic character of the former and the lower crosslinking density generated by the longer molecules of BM might be the cause of this behavior. The results also reveal that water diffuses into the network following a non-Fickian mechanism. This is concluded from the value of the diffusion exponent n, which is higher than 0.50. The elastic modulus and the equilibrium water content (EWC) measurements suggest that these materials may have potential application as biomaterials.  相似文献   

4.
Novel hybrid polymer hydrogels were prepared in a facile manner by simple mixing of a water-soluble copolymer having trimethoxysilyl side chains with silica nanoparticles used as multiple crosslinkers.  相似文献   

5.
SEM micrographs of macroporous and conventional poly(N,N-dimethylacrylamide) hydrogels were obtained for specimens synthesized in different conditions and prepared for microscopy by different methods (freeze drying of different solvents and critical point drying). The crosslinking density of both types of samples was determined through T g measurements. Open structures (honeycomb-like, fibrillar networks) were more frequently observed in specimens prepared by freeze drying of benzene, which was attributed to its large pressure and temperature at the triple point. In spite of the different structure in the millimeter scale, there is no significant difference in the mesh size of fibrillar networks observed for macroporous and conventional samples, and in both cases it decreases with increasing crosslinking density. Other effects of the crosslinking density are that only incomplete honeycomb-like structures were formed in low-crosslinking samples and that collapsed structures were developed by phase separation throughout polymerization in highly crosslinked samples. Fibrillar networks of 1-μm mesh size were observed for the uncrosslinked polymer.  相似文献   

6.
In recent decades, the basic technology of pressure-sensitive adhesive (PSA) acrylics has developed into a sophisticated science. The main properties of acrylic PSAs such as tack, peel adhesion, and shear strength are determined to a large extent by the kind and quantity of crosslinking agents added to the synthesized PSAs. In order to improve their adhesive (tack, peel adhesion) and cohesive (shear strength) properties, a wide range of amino resin thermal crosslinkers are tested. An acrylic PSA based on 2-ethylhexylacrylate, n-butyl acrylate, and acrylic acid was synthesized by performing a radical polymerization in ethyl acetate. After the addition of amino resins to the acrylic PSA and carrying out thermally initiated crosslinking processes to prepare one-sided self-adhesive tapes, their properties were assessed.  相似文献   

7.
A simple two-step method was introduced to improve the hydrogel mechanical strength by forming an interpenetrating network (IPN). For this purpose, we synthesized polyacrylate/polyacrylate (PAC/PAC), polyacrylate/polyacrylamide (PAC/PAM), polyacrylamide/polyacrylamide (PAM/PAM) and polyacrylamide/poly(vinyl alcohol) (PAM/PVA) IPN hydrogels. The PAC/PAC IPN and PAC/PAM IPN hydrogels showed compressive strength of 70 and 160 kPa, respectively. For the PAM/PAM IPN and PAM/PVA IPN hydrogels, they exhibited excellent tensile strength of 1.2 and 2.8 MPa, and elongations at break of 1750% and 3300%, respectively. A strain relaxation was also observed in the case of PAM series IPN hydrogels. From FTIR, TGA and SEM measurements, we confirmed that physical entanglement, hydrogen bonds and chemical crosslinking played major roles in improving hydrogel strength and toughening. The two-step technique contributes to the understanding of ideal networks, provides a universal strategy for designing high mechanical strength hydrogels, and opening up the biomedical application of hydrogels.  相似文献   

8.
With the increasing attention to the shortage of petroleum resources and environmental pollution, it is more urgent to develop new type biomass-derived and bio-degradability polymer materials. In this study, a various of bio-based ethylene-co-vinyl acetate (EVA)/poly (lactic acid) (PLA) thermoplastic vulcanizates (TPVs) with enhanced mechanical strength and shape memory behavior were prepared. The Fourier transform infrared spectroscopy (FTIR), torque rheometer, swelling equilibrium experiments, and thermal gravimetric analysis (TGA) indicate that the EVA component is more aggressive to the active radicals than PLA component, and the improvement of gel content for EVA component is more than that of PLA component. The scanning electronic microscope (SEM) and transmission electron microscopy (TEM) show that the co-continuous structure of EVA/PLA/AD TPV could be well maintained when the TMPTA was introduced into the multicomponent system. Obviously, the results also exhibit that the improvement of mechanical strength and shape memory behavior for EVA/PLA/AD TPV could be attributed to the increased gel content, especially the gel content of EVA component, without changing the crystallization behavior of EVA/PLA/AD TPV.  相似文献   

9.
This study explores the effects of 3-glycidoxypropyltrimethoxysilane (3-GPTS) modified Na-montmorillonite (Na-Mt) nanoclay addition on mechanical response of unidirectional basalt fiber (UD-BF)/epoxy composite laminates under tensile, flexural and compressive loadings. Fourier transform infrared (FT-IR), X-ray diffraction (XRD) and simultaneous thermal analysis (STA) data confirmed the reaction mechanism between the silane compound and Mt. It was demonstrated that addition of 5 wt % 3-GPTS/Mt resulted in 28%, 11% and 35% increase in flexural, tensile and compressive strengths. Scanning electron microscopy (SEM) clarified the improvement in the adhesion between the basalt fibers and matrix in the case of Mt-enhanced epoxy specimens. Also, a theoretical route based on a Euler-Bernoulli beam-based approach was employed to estimate the compressive properties of the composites. The results demonstrated good agreement between theoretical and experimental approaches. Totally, the results of the study show that matrix modification is an effective strategy to improve the mechanical behavior of fibrous composites.  相似文献   

10.
The mechanical strength of polymer scaffold is closely related to its crystallinity. In this work, cellulose nanocrystals (CNC) were incorporated into poly-l-lactide (PLLA) scaffold which was fabricated by selective laser sintering, aiming to improve the mechanical properties. CNC possesses numerous hydroxyl groups which might form hydrogen bond with PLLA molecular chains. The hydrogen bond induces the ordered arrangement of PLLA chain by using CNC as heterogeneous nucleating agent, thereby increasing crystallization rate and crystallinity. Results showed that PLLA scaffolds with 3 wt% CNC resulted in 191%, 351%, 34%, 83.5%, 56% increase in compressive strength, compressive modulus, tensile strength, tensile modulus and Vickers hardness, respectively. Encouragingly, with the incorporation of hydrophilic CNC, the PLLA/CNC scaffolds showed not only better hydrophilicity, but also faster degradation than PLLA. In vitro cell culture studies proved that the PLLA/CNC scaffolds were biocompatible and capable of supporting cell adhesion, proliferation and differentiation. The above results indicated that the PLLA/CNC scaffolds may therefore be a potential replacement in bone repair.  相似文献   

11.
We have researched the functionalized polyurethane (PU) that can exhibit a wide range of interesting performances unattainable from the ordinary PU. We found that the grafted Phenol Red sharply increased the tensile mechanical strength due to the chemical crosslinking by Phenol Red. In addition, shape recovery at 0°C improved from 24% up to 84%, and the shape retention at ?30°C decreased as the Phenol Red content increased. The Phenol Red-grafted PU demonstrated flexibility, even at ?50°C, and a full recovery at ?5°C. Therefore, Phenol Red-grafted PU exhibited a sharp improvement in tensile stress, shape recovery, and low-temperature flexibility, which was not attainable in ordinary PU. The Phenol Red-grafted PU performed better than other functionalized PU we have developed.  相似文献   

12.
蔡杰  张俐娜 《高分子科学》2016,34(10):1281-1289
High strength cellulose composite films with antibacterial activities were prepared by dispersing montmorillonites (MMT) into cellulose solution in LiOH/urea aqueous solvent followed by regeneration in ethanol coagulation bath, and then by soaking in 5 wt% hexadecylpyridine bromide ethanol solutions to induce the antibacterial action. The cellulose/MMT composite films were characterized by field emission scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, FTIR, UV-spectra, wide angle X-ray diffraction and mechanical test. The results revealed that MMT was dispersed well in the cellulose matrix to form layer structure with a thickness of approximately 3 nm. The mechanical properties of the cellulose/MMT composite films were significantly improved to achieve 132 MP for tensile strength as a result of the MMT delamination. The hexadecylpyridine bromide was fixed well in the cellulose/MMT matrix through cation exchange, leading to the excellent antibacterial activities against Staphylococcus aureus and Escherichia coli, which is important in their practical applications.  相似文献   

13.
A nanocomposite (NC) hydrogel crosslinked by inorganic Laponite XLG was successfully synthesized via in situ free radical polymerization of monomers N,N‐diethylacrylamide and (2‐dimethylamino) ethyl methacrylate (DMAEMA). Polymerization was carried out at room temperature due to the accelerating effect of DMAEMA. The as‐prepared hydrogels displayed controlled transformation in optical transmittance and volume in response to small diversification of environmental factors, such as temperature and pH. The compressive strength of swollen D6:1G6 hydrogels was as high as 2219 kPa while compressive strain was 95%. Cyclic compression measurement exhibited good elastic properties of NC hydrogels. This work provides a facile method for fabricating stimuli‐responsive hydrogels with superior mechanical property. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 876–884  相似文献   

14.
Divinyl-hexa[(trimethoxysilyl)ethyl]-POSS (DVPS) as an octavinyl-POSS derivative was first prepared. A series of novel polydimethylsiloxane (PDMS)/DVPS hybrid materials as room temperature vulcanized (RTV) silicone rubber were prepared. The chemical incorporation of novel POSS into hydroxyl-terminated PDMS system by hydrolytic condensation reaction was verified by attenuated total reflection (ATR) infrared spectroscopy. Thermal degradation, thermo-oxidative stability and mechanical properties of these novel RTV silicone rubbers were studied by means of thermogravimetric analysis and tensile testing. The results exhibited significantly enhanced effects on the thermal stabilities and mechanical properties as compared to the PDMS polymer prepared with tetraethoxysilane (TEOS). The observed improvements in thermal properties could be attributed to the effective three-dimensional network structures resulting from the structure of DVPS. The thermal decomposition of the RTV silicone rubbers in nitrogen was also monitored by TGA coupled with real-time FTIR, and the degradation residues were also characterized by FTIR. It was found that the POSS cross-linker facilitated the formation of cross-links in the degradation residues. The striking improvement in mechanical properties could be attributed to the synergistic action of the structure of three-dimensional multi-arm cross-linker (vinyl-POSS derivative), the plasticization of self-cross-linking Vinyl-POSS derivative and perfect distribution of vinyl-POSS derivative.  相似文献   

15.
《Electrophoresis》2017,38(6):922-929
A novel capillary zone electrophoresis (CZE) method was developed for an improved separation and size characterization of pristine gold nanoparticles (AuNP) using uncoated fused‐silica capillaries with UV‐Vis detection at 520 nm. To avoid colloid aggregation and/or adsorption during runs, poly(sodium 4‐styrenesulfonate) (PSS) was added (1%, w/v) in the running buffer (CAPS 10 mM, pH 11). This polyelectrolyte conferred an enhanced stabilization to AuNP, both steric and electrostatic, exalting at the same time their differences in electrophoretic mobility. Resolution was further and successfully improved through a stepwise field strength gradient by the application of 25 kV for the first 5 min and then 10 kV. Migration times varied linearly with particles diameters showing relative standard deviations better than 1% for daily experiments and 3% for interday experiments. A comparison with the size distribution obtained by transmission electron microscopy (TEM) allowed assessing that the electrophoretic profile can reasonably be considered as representative of the effective size heterogeneity of each colloid. Finally, the practical utility of the proposed method was demonstrated by measuring the core diameter of a gold colloid sample produced by chemical synthesis which was in good agreement with the value obtained by TEM measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号