首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phosphine-catalyzed [4 + 2] annulations between allenoates and electron-poor trifluoromethyl ketones or N-tosylbenzaldimine dipolarophiles have been investigated in continuum solvation using density functional theory (DFT) calculations. The detailed reaction mechanisms as well as the high cis-diastereoselectivities of the reactions have been firstly clarified. Our calculated results reveal that the whole catalytic process is presumably initiated with the nucleophilic attack of phosphine catalyst at the allenoate to produce the zwitterionic intermediate , which subsequently undergoes γ-addition to the electron-poor C[double bond, length as m-dash]O (or C[double bond, length as m-dash]N) dipolarophile to form another intermediate . The following [1,3] hydrogen shift of is demonstrated to proceed via two consecutive proton transfer steps without the assistance of protic solvent: the anionic O6 (or N6) of first acts as a base catalyst to abstract a proton from C1 to produce the intermediate , and then the OH (or NH) group can donate the acidic proton to C3 to complete the [1,3] hydrogen shift and generate the intermediate . Finally, the intramolecular Michael-type addition followed by the elimination of catalyst furnishes the final product. High cis-diastereoselectivities are also predicted for both the two reactions, which is in good agreement with the experimental observations. For the reaction of allenoates with trifluoromethyl ketones, the first proton transfer is found to be the diastereoselectivity-determining step. The cumulative effects of the steric repulsion, electrostatic interaction as well as other weak interactions appear to contribute to the relative energies of transition states leading to the diastereomeric products. On the contrary, in the case of N-tosylbenzaldimines, the Michael-type addition is found to be the diastereoselectivity-determining step. Similarly, steric repulsion, as well as electrostatic interaction is also identified to be the dominant factors in controlling the high cis-diastereoselectivity of this reaction.  相似文献   

2.
The complete catalytic cycle for the intramolecular hydroamination/cyclisation (IHC) of 4,5-hexadien-1-ylamine (1) by a prototypical [ZrCp(2)Me(2)] precatalyst (2) has been scrutinized by employing a reliable DFT method. The present study conducted by means of a detailed computational characterisation of structural and energetic aspects of alternative pathways for all of the relevant elementary steps complements the mechanistic insights revealed from experimental results. The operative mechanism entails an initial transformation of precatalyst 2 into the thermodynamically prevalent, but dormant, bis(amido)-Zr compound in the presence of aminoallene 1. This complex undergoes a reversible, rate-determining alpha-elimination of 1 to form the imidoallene-Zr complex. The substrate-free form, which contains a chelating imidoallene functionality, is the catalytically active species and is rapidly transformed into azazirconacyclobutane intermediates through a [2+2] cycloaddition reaction. This highly facile process does not proceed regioselectively because the alternative pathways for the formation of five- and six-membered azacycles have comparable probabilities. Degradation of cyclobutane intermediates by following the most feasible pathway occurs through protonolysis of the metallacycle moiety and subsequent proton transfer from the Zr-NHR moiety onto the azacycle. The five-membered allylamine is generated through protonation at carbon atom C(6) followed by alpha-hydrogen elimination, whereas protonolysis of the cyclobutane moiety at the Zr-N bond followed by proton transfer onto carbon atom C(5) is the dominant route for the six-membered product. Of the two consecutive proton transfer steps, the second one determines the overall kinetics of the entire protonation sequence. This process is predicted to be substantially slower than the cycloaddition reaction. The factors that regulate the composition of the cycloamine products have been elucidated.  相似文献   

3.
Polyynic structures in fuel-rich low-pressure flames are observed using VUV photoionization molecular-beam mass spectrometry. High-level ab initio calculations of ionization energies for C2nH2 (n=1-5) and partially hydrogenated CnH4 (n=7-8) polyynes are compared with photoionization efficiency measurements in flames fuelled by allene, propyne, and cyclopentene. C2nH2 (n=1-5) intermediates are unambiguously identified, while HC[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-CH=C=CH2, HC[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-CH=CH2 (vinyltriacetylene) and HC[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-CH[double bond, length as m-dash]CH-C[triple bond, length as m-dash]CH are likely to contribute to the C7H4 and C8H4 signals. Mole fraction profiles as a function of distance from the burner are presented. C7H4 and C8H4 isomers are likely to be formed by reactions of C2H and C4H radicals but other plausible formation pathways are also discussed. Heats of formation and ionization energies of several combustion intermediates have been determined for the first time.  相似文献   

4.
The synthesis and characterization of a stable 1,2-bis(ferrocenyl)diphosphene, wherein a P[double bond, length as m-dash]P π-bond connects two ferrocenyl units will be reported. This represents an unprecedented example for a d-π electron system containing a heavier pnictogen π-spacer group. Stabilization of the highly reactive P[double bond, length as m-dash]P π-bond was achieved by steric protection using two bulky ferrocenyl moieties.  相似文献   

5.
An intramolecular [2+3]-cycloaddition of an azide to a CC double bond was carried out to obtain hexahydro[1,2,3]triazolo[1,5-a]pyrazines. These compounds were used as intermediates to prepare 2-(halogenomethyl)piperazines that could serve as precursors for various condensed derivatives.  相似文献   

6.
This paper describes a tandem strategy to synthesize a series of new Fischer carbene complexes [(CO)(4)M[double bond, length as m-dash]C[N-(CH(2))(4)-]CH[double bond, length as m-dash]C(NRR')(SR'); M = Cr, W; R = Ar, R' = Me, -(CH(2))(2)-] with a thioimide or thiazoline fragment, in which the sulfur or nitrogen atom is coordinated to a metal center, depending on the nature of alkylating groups included as R'. We have trapped by protonation the proposed intermediate as the thioamide 12 [(CO)(5)W[double bond, length as m-dash]C[N-(CH(2))(4)-]CH(2)C(S)NHPh], which reveals the pathway of this reaction.  相似文献   

7.
8.
The reactivity of complex [Ru(eta(6)-p-cymene)(kappa(3)P,N,O-Ph(2)PCH(2)P{[double bond, length as m-dash]NP([double bond, length as m-dash]O)(OEt)(2)}Ph(2))][SbF(6)](2) towards a variety of mono- and bidentate neutral ligands has been studied, allowing the high-yield synthesis of the novel half-sandwich Ru(ii) derivatives [Ru(eta(6)-p-cymene)(L)(kappa(2)P,O-Ph(2)PCH(2)P{[double bond, length as m-dash]NP([double bond, length as m-dash]O)(OEt)(2)}Ph(2))][SbF(6)](2) (L = N[triple bond, length as m-dash]CMe , N[triple bond, length as m-dash]CEt , PMe(3), PMe(2)Ph , PMePh(2), PPh(3), P(OMe)(3), P(OEt)(3), P(OPh)(3), py , kappa(1)P-dppm , kappa(1)P-dppe ), as well as the octahedral species [Ru(Ninsertion markN)(2)(kappa(2)P,O-Ph(2)PCH(2)P{[double bond, length as m-dash]NP([double bond, length as m-dash]O)(OEt)(2)}Ph(2))][SbF(6)](2) (Ninsertion markN = bipy , phen ). Deprotonation of complexes ,, upon treatment with an excess of NaOH in CH(2)Cl(2), generates the monocationic derivatives [Ru(Ninsertion markN)(2)(kappa(2)P,N-Ph(2)PC(H)[double bond, length as m-dash]P{NP([double bond, length as m-dash]O)(OEt)(2)}Ph(2))][Cl] (Ninsertion markN = bipy , phen ) in which the methanide anion adopts an unprecedented kappa(2)P,N bidentate coordination mode. The structures of compounds , and have been determined by single-crystal X-ray diffraction methods.  相似文献   

9.
Reaction of the mixed thioether/ether crowns [9]aneO(2)S , [12]aneO(3)S and [18]aneO(4)S(2) with one mol. equivalent of the aminating agent MSH (o-mesitylsulfonylhydroxylamine) in Et(2)O results in the formation of the mono-sulfimidated systems {[9]aneO(2)(S[double bond, length as m-dash]NH(2))}(+), {[12]aneO(3)(S[double bond, length as m-dash]NH(2))}(+) and {[18]aneO(4)S(S[double bond, length as m-dash]NH(2))}(+), while using two mol. equivalents of MSH with gives the disulfimidium cation {[18]aneO(4)(S[double bond, length as m-dash]NH(2))(2)}(2+). All of these species have been isolated in good yields as the [mesSO(3)](-) (mes = 2,4,6-Me(3)C(6)H(2)) salts and can be readily converted to the [BPh(4)](-) salts by metathesis with Na[BPh(4)]. Treatment of or with lithium diisopropylamide (LDA) and N-bromosuccinimide (NBS) at -78 degrees C, followed by addition of a further equivalent of the parent thia/oxa crown, gives monocationic N-bridged sulfimide bicyclic compounds ( and respectively), in which the crowns are linked by the sulfimidic nitrogen. Reaction of with LDA and NBS leads to formation of the {([18]aneO(4)S(2))N}(+) cation which exhibits an intramolecular S-N-S bridge. Crystallographic studies on representative examples of each compound type are described, together with their spectroscopic properties.  相似文献   

10.
The alkynyl(vinylidene)rhodium(I) complexes trans-[Rh(C[triple bond, length as m-dash]CR)(=C=CHR)(PiPr3)2] 2, 5, 6 react with CO by migratory insertion to give stereoselectively the butenynyl compounds trans-[Rh{eta1-(Z)-C(=CHR)C[triple bond, length as m-dash]CR}(CO)(PiPr3)2](Z)-7-9, of which (Z)-7 (R=Ph) and (Z)-8 (R=tBu) rearrange upon heating or UV irradiation to the (E) isomers. Similarly, trans-[Rh{eta1-C(=CH2)C[triple bond, length as m-dash]CPh}(CO)(PiPr3)2] 12 and trans-[Rh{eta1-(Z)-C(=CHCO2Me)C[triple bond, length as m-dash]CR}(CO)(PiPr3)2](Z)-15, (Z)-16 have been prepared. At room temperature, the corresponding "non-substituted" derivative trans-[Rh{eta1-C(=CH2)C[triple bond, length as m-dash]CH}(CO)(PiPr3)2] 18 is in equilibrium with the butatrienyl isomer trans-[Rh(eta1-CH=]C=C=CH2)(CO)(PiPr3)2] 19 that rearranges photochemically to the alkynyl complex trans-[Rh(C[triple bond, length as m-dash]CCH=CH2)(CO)(PiPr3)2] 20. Reactions of (Z)-7, (E)-7, (Z)-8 and (E)-8 with carboxylic acids R'CO2H (R'=CH3, CF3) yield either the butenyne (Z)- and/or (E)-RC[triple bond, length as m-dash]CCH=CHR or a mixture of the butenyne and the isomeric butatriene, the ratio of which depends on both R and R'. Treatment of 2 (R=Ph) with HCl at -40 degrees C affords five-coordinate [RhCl(C[triple bond, length as m-dash]CPh){(Z)-CH=CHPh}(PiPr3)2] 23, which at room temperature reacts by C-C coupling to give trans-[RhCl{eta2-(Z)-PhC[triple bond, length as m-dash]CCH=CHPh}(PiPr3)2](Z)-21. The related compound trans-[RhCl(eta2-HC[triple bond, length as m-dash]CCH=CH2)(PiPr3)2] 27, prepared from trans-[Rh(C[triple bond, length as m-dash]CH)(=C=CH2)(PiPr3)2] 17 and HCl, rearranges to the vinylvinylidene isomer trans-[RhCl(=C=CHCH=CH2)(PiPr3)2] 28. While stepwise reaction of 2with CF3CO2H yields, via alkynyl(vinyl)rhodium(III) intermediates (Z)-29 and (E)-29, the alkyne complexes trans-[Rh(kappa1-O2CCF3)(eta2-PhC[triple bond, length as m-dash]CCH=CHPh)(PiPr3)2](Z)-30 and (E)-30, from 2 and CH3CO2H the acetato derivative [Rh(kappa2-O2CCH3)(PiPr3)2] 33 and (Z)-PhC[triple bond, length as m-dash]CCH=]CHPh are obtained. From 6 (R=CO2Me) and HCl or HC[triple bond, length as m-dash]CCO2Me the chelate complexes [RhX(C[triple bond, length as m-dash]CCO2Me){kappa2(C,O)-CH=CHC(OMe)=O}(PiPr3)2] 34 (X=Cl) and 35 (X=C[triple bond, length as m-dash]CCO2Me) have been prepared. In contrast to the reactions of [Rh(kappa2-O2CCH3)(C[triple bond, length as m-dash]CE)(CH=CHE)(PiPr3)2] 37(E=CO2Me) with chloride sources which give, via intramolecular C-C coupling, four-coordinate trans-[RhCl{eta2-(E)-EC[triple bond, length as m-dash]CCH=CHE}(PiPr3)2](E)-36, treatment of 37with HC[triple bond, length as m-dash]CE affords, via insertion of the alkyne into the rhodium-vinyl bond, six-coordinate [Rh(kappa2-O2CCH3)(C[triple bond, length as m-dash]CE){eta1-(E,E)-C(=CHE)CH=CHE}(PiPr3)2] 38. The latter reacts with MgCl2 to yield trans-[RhCl{eta2-(E,E)-EC[triple bond, length as m-dash]CC(=CHE)CH=CHE}(PiPr3)2] 39, which, in the presence of CO, generates the substituted hexadienyne (E,E)-EC[triple bond, length as m-dash]CC(=CHE)CH=CHE 40.  相似文献   

11.
Lithium and nickel complexes bearing quinoline-based ligands have been synthesized and characterized. Reaction of 8-azidoquinoline with Ph(2)PNHR (R = p-MeC(6)H(4), Bu(t)) affords N-(8-quinolyl)iminophosphoranes RNHP(Ph(2))[double bond, length as m-dash]N(8-C(9)H(6)N) (1a, R = p-MeC(6)H(4); 1b, R = Bu(t). C(9)H(6)N = quinolyl)). Reaction of 1a with (DME)NiCl(2) generates a nickel complex [NiCl(2){N(8-C(9)H(6)N)[double bond, length as m-dash]P(Ph(2))NH(p-MeC(6)H(4))}] (2a). Treatment of 1b with (DME)NiCl(2) and following with NaH produces [NiCl{(1,2-C(6)H(4))P(Ph)(NHBu(t))[double bond, length as m-dash]N(8-C(9)H(6)N)}] (4). Complex 4 was also obtained by reaction of (DME)NiCl(2) with [Li{(1,2-C(6)H(4))P(Ph)(NHBu(t))[double bond, length as m-dash]N(8-C(9)H(6)N)}] (5) prepared through lithiation of 1b. Reaction of 2-PyCH(2)P(Ph(2))[double bond, length as m-dash]N(8-C(9)H(6)N) (6, Py = pyridyl) and PhN[double bond, length as m-dash]C(Ph)CH(2)P(Ph(2))[double bond, length as m-dash]N(8-C(9)H(6)N) (8), respectively, with (DME)NiCl(2) yields two five-coordinate N,N,N-chelate nickel complexes, [NiCl(2){2-PyCH(2)P(Ph(2))[double bond, length as m-dash]N(8-C(9)H(6)N)}] (7) and [NiCl(2){PhN[double bond, length as m-dash]C(Ph)CH(2)P(Ph(2))[double bond, length as m-dash]N(8-C(9)H(6)N)}] (9). Similar reaction between Ph(2)PCH(2)P(Ph(2))[double bond, length as m-dash]N(8-C(9)H(6)N) (10) and (DME)NiCl(2) results in five-coordinate N,N,P-chelate nickel complex [NiCl(2){Ph(2)PCH(2)P(Ph(2))[double bond, length as m-dash]N(8-C(9)H(6)N)}] (11). Treatment of [(8-C(9)H(6)N)N[double bond, length as m-dash]P(Ph(2))](2)CH(2) (12) [prepared from (Ph(2)P)(2)CH(2) and 2 equiv. of 8-azidoquinoline] with LiBu(n) and (DME)NiCl(2) successively affords [NiCl{(8-C(9)H(6)N)NP(Ph(2))}(2)CH] (13). The new compounds were characterized by (1)H, (13)C and (31)P NMR spectroscopy (for the diamagnetic compounds), IR spectroscopy (for the nickel complexes) and elemental analysis. Complexes 2a, 4, 7, 9, 11 and 13 were also characterized by single-crystal X-ray diffraction techniques. The nickel complexes were evaluated for the catalysis in the cross-coupling reactions of arylzinc reagents with aryl chlorides and aryltrimethylammonium salts. Complex 7 exhibits the highest activity among the complexes in catalyzing the reactions of arylzinc reagents with either aryl chlorides or aryltrimethylammonium bromides.  相似文献   

12.
This study examines alternative reaction channels for intramolecular hydroamination/cyclisation (IHC) of primary 4,5-hexadien-1-ylamine aminoallene (1) by a neutral [Cp(2)ZrMe(2)] zirconocene precatalyst (2) by using the density functional theory (DFT) method. The first channel proceeds through a [Cp(2)Zr(NHR)(2)] complex as the reactive species and relevant steps including the insertion of an allenic C=C linkage into the Zr--NHR sigma-bond and ensuing protonolysis. This is contrasted to the [2+2] cycloaddition mechanism involving a [Cp(2)Zr=NR] transient species. The salient features of the rival mechanisms are disclosed. The cycloaddition route entails the first transformation of the dormant [Cp(2)Zr(NHR)(2)] complex 3 B into the transient [Cp(2)Zr=NR] intermediate 3 A', which is turnover limiting. This route features a highly facile ring closure together with a substantially slower protonolysis (k(cycloadd)>k(protonolysis)) and can display inhibition by high substrate concentration. In contrast, protonolysis is the more facile step for the channel proceeding through the [Cp(2)Zr(NHR)(2)] complex as the catalytically active species. Here, C=C insertion into the Zr--C sigma-bond of 3 B, which represents the catalyst resting state, is turnover limiting and substrate concentration is unlikely to influence the rate. The regulation of the selectivity is elucidated for the two channels. DFT predicts that five-ring allylamine and six-ring imine are generated upon traversing the cycloaddition route, thereby comparing favourably with experiment, whereas the cycloimine should be formed solely along the sigma-bond insertion route. The mechanistic analysis is indicative of an operating [2+2] cycloaddition mechanism. The Zr--NHR sigma-bond insertion route, although appearing not to be employed for the reactants studied herein, is clearly suggested as being viable for hydroamination by charge neutral organozirconium compounds.  相似文献   

13.
14.
Reaction of the ruthenium half sandwich compound RuCl(eta(5)-C(5)H(5))(PPh(3))(2) with the uracil (Ur) substituted alkyne HC[triple bond, length as m-dash]CUr in the presence of halide scavengers NH(4)X (X = PF(6), BF(4), OTf) results in the formation of the vinylidene complexes [Ru([double bond, length as m-dash]C[double bond, length as m-dash]CHUr)(eta(5)-C(5)H(5))(PPh(3))(2)][X] which crystallize in the hexagonal space group P6(3)/m. The hexagonal symmetry inherent to the system is due to the formation of a hydrogen bonded array mediated by the two sets of donor-acceptor units on the uracil, resulting in the formation of a cyclic "rosette" containing six ruthenium cations. In solution the (1)H and (31)P{(1)H} NMR spectra of the vinylidene complexes are both concentration and temperature dependent, in accord with the presence of monomer-dimer equilibria in which the rate of rotation of the vinylidene group is fast on the NMR timescale in the monomeric species, but slow in the dimers. The isoelectronic molybdenum-containing vinylidene complex [Mo(eta(7)-C(7)H(7))(dppe)([double bond, length as m-dash]C[double bond, length as m-dash]CHUr)][BF(4)] (dppe = 1,2-bis(diphenylphosphino)ethane) has also been prepared, but forms symmetric dimers in the solid state.  相似文献   

15.
The microwave spectra of propa-1,2-dienyl selenocyanate, H(2)C==C==CHSeC[triple bond]N, and cyclopropyl selenocyanate, C(3)H(5)SeC[triple bond]N, are reported. The spectra of the ground and two vibrationally excited states of the (80)Se isotopologue and the spectrum of the ground state of the (78)Se isotopologue were assigned for one rotameric form of H(2)C==C[double bond, length as m-dash]CHSeC[triple bond]N. This conformer is characterized by a C-C-Se-C dihedral angle of 129(5) degrees from synperiplanar (0 degrees ) and is shown to be the global minimum of H(2)C[double bond, length as m-dash]C[double bond, length as m-dash]CHSeC[triple bond]N. The spectra of the ground and of three vibrationally excited states of the (80)Se isotopologue, as well as of the ground state of the (78)Se isotopologue of one rotamer of C(3)H(5)SeC[triple bond]N were assigned. This conformer has a H-C-Se-C dihedral angle of 80(4) degrees from synperiplanar and is at least 3 kJ mol(-1) more stable than any other form of the molecule. The microwave study has been augmented by quantum chemical calculations at the B3LYP/6-311+ +G(3df,3pd) and MP2/6-311+ +G(3df,3pd) levels of theory.  相似文献   

16.
There has been much interest in the synthesis and properties of doubly bonded systems between heavier Group 15 elements, i. e. heavier analogues of azo-compounds (dipnictenes), from the viewpoints of fundamental and material chemistry. Although such double-bond compounds between heavier main group elements are known to be highly reactive, too much so to be isolated as stable compounds, a number of reports on the synthesis of kinetically stabilized diphosphenes (RP[double bond, length as m-dash]PR), diarsenes (RAs[double bond, length as m-dash]AsR), and phosphaarsenes (RP[double bond, length as m-dash]AsR) bearing bulky substituent have been published since 1980. We have also succeeded in the synthesis of the first stable distibene (RSb[double bond, length as m-dash]SbR) and dibismuthene (RBi[double bond, length as m-dash]BiR) by taking advantage of efficient steric protection groups, 2,4,6-tris[bis(trimethylsilyl)methyl]phenyl (Tbt) and 2,6-bis[bis(trimethylsilyl)methyl]-4-[tris(trimethylsilyl)methyl]phenyl (Bbt), and revealed their structures and properties systematically. Thus, the doubly bonded compounds between heavier Group 15 elements are no longer imaginary species but are those with real existence which are stable, even in the case of the heaviest non-radioactive element bismuth, when they are appropriately protected by bulky substituents. This Perspective describes our research on the chemistry of kinetically stabilized double-bond compounds between heavier Group 15 elements.  相似文献   

17.
Azines (R(2)C[double bond, length as m-dash]N-N[double bond, length as m-dash]CR(2)) are 2,3-diaza analogues of 1,3-butadiene. In this report we show that strong polarisation of the azine imparts structural features consistent with delocalization within the azine fragment; NLO properties for the azines are also reported.  相似文献   

18.
To investigate the π bonding electron contribution to N-HO[double bond, length as m-dash]C hydrogen-bond (H-bond) formation, we applied IR cavity ringdown spectroscopy to jet-cooled pyrrole-acetone (Py-Ac) binary clusters. The observed NH stretching vibrations were analyzed by density functional theory (DFT), in which the energetically optimized structures, harmonic frequencies, and interaction energies were calculated for various sizes of binary clusters. We observed three NH stretching vibrations, ascribed to binary clusters at 3406, 3388, and 3335 cm(-1). These were assigned to H-bonded NH stretches of the Py(2)-Ac(1), Py(1)-Ac(1), and Py(1)-Ac(2) clusters, respectively. The Py(1)-Ac(1) cluster has a single N-HO[double bond, length as m-dash]C H-bonded structure with C(s) symmetry, while the Py(1)-Ac(2) cluster has a cyclic structure formed by a single N-HO[double bond, length as m-dash]C H-bond, dipole-dipole interactions, and weak CH H-bonds. A natural bond orbital (NBO) analysis was performed to reveal the H-bond strength in Py-Ac binary clusters. For the Py(1)-Ac(2) cluster, we found that the donor-acceptor interactions are not only the n →σ* type (O atom lone pair to the NH anti-bonding orbitals), but also the π→σ* type (the CO π bonding to the NH anti-bonding orbitals). By analyzing the relationship between the frequency shift and the stabilization energy in donor-acceptor interactions, we concluded that larger red-shift of the NH stretching vibration in the Py(1)-Ac(2) can be explained by not only the lone pair and the π electron contributions to the N-HO[double bond, length as m-dash]C H-bond, but also the dipole-interaction between Py and non-H-bonded Ac. We also discussed the structures of Py(2)-Ac(1) clusters.  相似文献   

19.
Thermolyses of seven dialkyl, two alkyl-aryl and two diaryl O-benzyl ketoxime ethers, R(1)R(2)C[double bond, length as m-dash]NOCH(2)Ph, have been examined in three hydrogen donor solvents: tetralin, 9,10-dihydrophenanthrene, and 9,10-dihydroanthracene. All the oxime ethers gave the products expected from homolytic scission of both the O-C bond (viz., R(1)R(2)C[double bond, length as m-dash]NOH and PhCH(3)) and N-O bond (viz., R(1)R(2)C[double bond, length as m-dash]NH and PhCH(2)OH). The yields of these products depended on which solvent was used and the rates of decomposition of the O-benzyl oxime ethers were greater in 9,10-dihydrophenanthrene and 9,10-dihydroanthracene than in tetralin. These results indicated that a reverse radical disproportionation reaction in which a hydrogen atom was transferred from the solvent to the oxime ether, followed by [small beta]-scission of the resultant aminoalkyl radical, must be important in the latter two solvents. Benzaldehyde was found to be an additional product from thermolyses conducted in tetralin. This, and other evidence, indicated that another induced decomposition mode involving abstraction of a benzylic hydrogen atom, followed by [small beta]-scission of the resulting benzyl radical, became important for some substrates. Participation by minor amounts of enamine tautomers of the oxime ethers was shown to be negligible by comparison of thermolysis data for the O-benzyloxime of bicyclo[3.3.1]nonan-9-one, which cannot give an enamine tautomer, with that of the O-benzyloxime of cyclohexanone.  相似文献   

20.
The mononuclear pentafluorophenyl platinum complex containing the chelated diphenylphosphinous acid/diphenylphosphinite system [Pt(C(6)F(5)){(PPh(2)O)(2)H}(PPh(2)OH)] 1 has been prepared and characterised. 1 and the related alkynyl complex [Pt(C[triple bond, length as m-dash]CBu(t)){(PPh(2)O)(2)H}(PPh(2)OH)] 2 form infinite one-dimensional chains in the solid state based on intermolecular O-H[dot dot dot]O hydrogen bonding interactions. Deprotonation reactions of [PtL{(PPh(2)O)(2)H}(PPh(2)OH)] (L = C(6)F(5), C[triple bond, length as m-dash]CBu(t), C[triple bond, length as m-dash]CPh 3) with [Tl(acac)] yields tetranuclear Pt(2)Tl(2) complexes [PtL{(PPh(2)O)(2)H}(PPh(2)O)Tl](2) (L = C(6)F(5) 4, C[triple bond, length as m-dash]CBu(t), C[triple bond, length as m-dash]CPh ). The structure of the tert-butylalkynyl derivative , established by X-ray diffraction, shows two anionic discrete units [Pt(C[triple bond, length as m-dash]CBu(t)){(PPh(2)O)(2)H}(PPh(2)O)](-) joined by two Tl(i) centres via Tl-O and Pt-Tl bonds. Despite the existence of Pt-Tl interactions, they do not show luminescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号