首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A well‐defined notion of chemical compound space (CCS) is essential for gaining rigorous control of properties through variation of elemental composition and atomic configurations. Here, we give an introduction to an atomistic first principles perspective on CCS. First, CCS is discussed in terms of variational nuclear charges in the context of conceptual density functional and molecular grand‐canonical ensemble theory. Thereafter, we revisit the notion of compound pairs, related to each other via “alchemical” interpolations involving fractional nuclear charges in the electronic Hamiltonian. We address Taylor expansions in CCS, property nonlinearity, improved predictions using reference compound pairs, and the ounce‐of‐gold prize challenge to linearize CCS. Finally, we turn to machine learning of analytical structure property relationships in CCS. These relationships correspond to inferred, rather than derived through variational principle, solutions of the electronic Schrödinger equation. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
The (19)F NMR shieldings for 53 kinds of perfluoro compounds were calculated by the B3LYP-GIAO method using the 6-31G(d), 6-31+G(d), 6-31G(d,p), 6-31++G(d,p), 6-311G(d,p), 6-311++G(d,p), 6-311G(2d,2p), 6-311++G(2d,2p), 6-311++G(2df,2p), 6-311++G(3d,2p), and 6-311++G(3df,2p) basis sets. The diffuse functions markedly reduce the difference between the calculated and experimental chemical shifts. The calculations using the 6-31++G(d,p) basis set give the chemical shifts within 10 ppm deviations from experimental values except for the fluorine nuclei attached to an oxygen atom, a four- and a six-coordinated sulfur atom, and FC(CF(3))(2) attached to a sulfur atom.  相似文献   

3.
The cornerstone of time-dependent (TD) density functional theory (DFT), the Runge-Gross theorem, proves a one-to-one correspondence between TD potentials and TD densities of continuum Hamiltonians. In all practical implementations, however, the basis set is discrete and the system is effectively described by a lattice Hamiltonian. We point out the difficulties of generalizing the Runge-Gross proof to the discrete case and thereby endorse the recently proposed TD bond-current functional theory (BCFT) as a viable alternative. TDBCFT is based on a one-to-one correspondence between TD Peierl’s phases and TD bond-currents of lattice systems. We apply the TDBCFT formalism to electronic transport through a simple interacting device weakly coupled to two biased non-interacting leads. We employ Kohn-Sham Peierl’s phases which are discontinuous functions of the density, a crucial property to describe Coulomb blockade. As shown by explicit time propagations, the discontinuity may prevent the biased system from ever reaching a steady state.  相似文献   

4.
The chemical hardness concept and its realization within the conceptual density functional theory is approached with innovative perspectives, such as the electronegativity and hardness equalization of atoms in molecules connected with the softness kernel, in order to examine the structure–reactivity equalization ansatz between the electronic sharing index and the charge transfer either in the additive or geometrical mean picture of bonding. On the other hand, the maximum hardness principle presents a relation with the chemical stability of the hardness concept. In light of the inverse relation between hardness and polarizability, the minimum polarizability principle has been proposed. Additionally, this review includes important applications of the chemical hardness concept to solid-state chemistry. The mentioned applications support the validity of the electronic structure principles regarding chemical hardness and polarizability in solid-state chemistry.  相似文献   

5.
Forty‐five years after the point de départ [Hohenberg and Kohn, Phys Rev, 1964, 136, B864] of density functional theory, its applications in chemistry and the study of electronic structures keep steadily growing. However, the precise form of the energy functional in terms of the electron density still eludes us—and possibly will do so forever [Schuch and Verstraete, Nat Phys, 2009, 5, 732]. In what follows we examine a formulation in the same spirit with phase space variables. The validity of Hohenberg–Kohn–Levy‐type theorems on phase space is recalled. We study the representability problem for reduced Wigner functions, and proceed to analyze properties of the new functional. Along the way, new results on states in the phase space formalism of quantum mechanics are established. Natural Wigner orbital theory is developed in depth, with the final aim of constructing accurate correlation‐exchange functionals on phase space. A new proof of the overbinding property of the Müller functional is given. This exact theory supplies its home at long last to that illustrious ancestor, the Thomas–Fermi model. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

6.
The water effect on peroxy radical measurement by chemical amplification was determined experimentally for HO2 and HO2 OH, respectively at room temperature (298±2) K and atmospheric pressure (1×105 Pa). No significant difference in water effect was observed with the type of radicals. A theoretical study of the reaction of HO2·H2O adduct with NO was performed using density functional theory at CCSD(T)/6-311 G(2d, 2p)//B3LYP/6-311 G(2d, 2p) level of theory. It was found that the primary reaction channel for the reaction is HO2·H2O NO→HNO3 H2O (R4a). On the basis of the theoretical study, the rate constant for (R4a) was calculated using Polyrate Version 8.02 program. The fitted Arrenhnius equation for (R4a) is k = 5.49×107 T 1.03exp(?14798/T) between 200 and 2000 K. A chemical model incorporated with (R4a) was used to simulate the water effect. The water effect curve obtained by the model is in accordance with that of the experiment, suggesting that the water effect is probably caused mainly by (R4a).  相似文献   

7.
It was recently shown that the size consistency of the energy implies that, for any system with a rational number of electrons, the energy is given by the weighted average of the two systems with the nearest integer numbers of electrons. Specifically, E[N+P/Q] = (1−P/Q)E[N] + (P/Q)E[N+1]. This paper extends that analysis, showing that the same result holds for irrational numbers of electrons. This proves that the energy is a continuous function of the number of electrons, and justifies differentiation with respect to electron number, providing a rigorous justification or the density-functional theoretic approaches to chemical concepts like the electronegativity and the Fukui function. Similar results hold for properties other than the energy. Specific emphasis is placed on molecular response properties associated with the density-functional theory of chemical reactivity.  相似文献   

8.
Hexamethyldisiloxane [HMDSO, (CH3)3-SiOSi-(CH3)3] is an important precursor for SiO2 formation during flame-based silica material synthesis. As a result, HMDSO reactions in flame have been widely investigated experimentally, and many results have indicated that HMDSO decomposition reactions occur very early in this process. In this paper, quantum chemical calculations are performed to identify the initial decomposition of HMDSO and its subsequent reactions using the density functional theory at the level of B3LYP/6-311+G (d, p). Four reaction pathways—(a) Si O bond dissociation of HMDSO, (b) Si C bond dissociation of HMDSO, (c) dissociation and recombination of Si O and Si C bonds, and (d) elimination of a methane molecule from HMDSO—have been examined and identified. From the results, it is found that the barrier of 84.38 kcal/mol and Si O bond dissociation energy of 21.55 kcal/mol are required for the initial decomposition reaction of HMDSO in the first pathway, but the highest free energy barrier (100.69 kcal/mol) is found in the third reaction pathway. By comparing the free energy barriers and reaction rate constants, it is concluded that the most possible initial decomposition reaction of HMDSO is to eliminate the CH3 radical by Si C bond dissociation.  相似文献   

9.
Ab initio calculations of a chemical shift at the HF/6‐31G(d,p)//B3LYP/6‐31G(d) level on a model system representing the interaction between Zn++ and the thiazoline ring of Bacitracin A is used for studying the binding mode between the metal ion and the ring system. The simulations show that a reinterpretation of the shift effects seen in the NMR spectra of the zinc–Bacitracin A complex may be needed, because the spectra probably indicate that the Zn++ ion is coordinated by the nitrogen atom of the thiazoline ring rather than the previously assumed sulfur atom. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 1–7, 2000  相似文献   

10.
The cytochromes P450 constitute a ubiquitous family of metalloenzymes, catalyzing manifold reactions of biological and synthetic importance via a thiolate‐ligated iron‐oxo (IV) porphyrin radical species denoted compound I (Cpd I). Experimental investigations have implicated this intermediate in a broad spectrum of biophysically interesting phenomena, further augmenting the importance of a Cpd I model system. Ab initio molecular dynamics, including Car–Parrinello and path integral methods, conjoin electronic structure theory with finite temperature simulation, affording tools most valuable to approach such enzymes. These methods are typically driven by density functional theory (DFT) in a plane‐wave pseudopotential framework; however, existing studies of Cpd I have been restricted to localized Gaussian basis sets. The appropriate choice of density functional and pseudopotential for such simulations is accordingly not obvious. To remedy this situation, a systematic benchmarking of thiolate‐ligated Cpd I is performed using several generalized‐gradient approximation (GGA) functionals in the Martins–Troullier and Vanderbilt ultrasoft pseudopotential schemes. The resultant electronic and structural parameters are compared to localized–basis DFT calculations using GGA and hybrid density functionals. The merits and demerits of each scheme are presented in the context of reproducing existing experimental and theoretical results for Cpd I. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
Bond distances, vibrational frequencies, dipole moments, dissociation energies, electron affinities, and ionization potentials of MX (XM = Y-Cd, X = F, Cl, Br, I) molecules in neutral, positively, and negatively charged ions were studied by density functional method, B3LYP. The bonding patterns were analyzed and compared with both the available data and across the series. It was found that besides ionic component, covalent bonds are formed between the 4d transition metal s, d orbitals, and the p orbital of halogen. For both neutral and charged molecules, the fluorides have the shortest bond distance, iodides the longest. Although the opposite situation is observed for vibrational frequency, that is, fluorides have the largest value, iodides the smallest. For neutral and anionic species, the dissociation energy tends to decrease with the increasing atomic number from Y to Cd, suggesting the decreasing or weakening of the bond strength. For cationic species, the trend is observed from Y to Ag.  相似文献   

12.
Algorithms that automatically explore the chemical space have been limited to chemical systems with a low number of atoms due to expensive involved quantum calculations and the large amount of possible reaction pathways. The method described here presents a novel solution to the problem of chemical exploration by generating reaction networks with heuristics based on chemical theory. First, a second version of the reaction network is determined through molecular graph transformations acting upon functional groups of the reacting. Only transformations that break two chemical bonds and form two new ones are considered, leading to a significant performance enhancement compared to previously presented algorithm. Second, energy barriers for this reaction network are estimated through quantum chemical calculations by a growing string method, which can also identify non-octet species missed during the previous step and further define the reaction network. The proposed algorithm has been successfully applied to five different chemical reactions, in all cases identifying the most important reaction pathways.  相似文献   

13.
The geometric parameters and energy characteristics of small endofullerenes N@Cn (n = 20, 24, 30, 32, 40, 50) and N@C60 in the quartet ground state were calculated by the B3LYP/6-31G* method. The N atom is located at the center of the carbon cage in all molecules except N@C30, where it is bound to the cage wall. Encapsulation of nitrogen atom has little effect on the fullerene cage geometry for n = 40, 50, and 60. No significant charge transfer from the N endo-atom to the cage was revealed for all the N@Cn endofullerenes studied. The calculated spin density on the nitrogen endo-atom increases as the size (n) of the carbon cage increases. The relative stabilities of Cn fullerenes and corresponding endofullerenes N@Cn are discussed. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 15–20, January, 2006.  相似文献   

14.
Neal's procedure has been applied to determine the electron density ρ(x) for the H2 molecule. The chemical hardness has been calculated employing the ab initio and density functional theory methods and the values are found to be reasonably good. The principle of maximum hardness (PMH) was tested. Fukui functions and the distribution of electron density around the internuclear distance were studied employing the electron density of the H2 molecule. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 81: 4–10, 2001  相似文献   

15.
Proton chemical shifts of eight cyclic amide molecules were measured in DMSO and D2O solutions. The magnetic shieldings of the corresponding aliphatic, aromatic, and amide protons were calculated by Hartree-Fock and DFT, using the 6-311G**, 6-311++G**, and TZVP basis sets. For aliphatic protons, all of these methods reproduce the experimental values in DMSO solutions excellently after linear regression. The Hartree-Fock method tends to give slightly better agreement than DFT. The best performance is given by the HF/6-311G** method, with an rms deviation of 0.068 ppm. The deviations from experimental chemical shifts in D2O solutions are only slightly larger than those in DMSO solutions. This suggests that we can use the calculated gas phase proton chemical shifts directly to predict experimental data in various solvents, including water. For amide protons, which exchange with water and form hydrogen bonds with DMSO, only modest agreement is obtained, as expected. The present studies confirm that the GIAO approach can reach high accuracy for the relative chemical shifts of aliphatic and aromatic protons at a low cost. Such calculations may provide constraints for the conformational analysis of proteins and other macromolecules.  相似文献   

16.
The Woodward-Hoffmann rules for pericyclic reactions are explained entirely in terms of directly observable physical properties of molecules (specifically changes in electron density) without any recourse to model-dependent concepts, such as orbitals and aromaticity. This results in a fundamental explanation of how the physics of molecular interactions gives rise to the chemistry of pericyclic reactions. This construction removes one of the key outstanding problems in the qualitative density-functional theory of chemical reactivity (the so-called conceptual DFT). One innovation in this paper is that the link between molecular-orbital theory and conceptual DFT is treated very explicitly, revealing how molecular-orbital theory can be used to provide "back-of-the-envelope" approximations to the reactivity indicators of conceptual DFT.  相似文献   

17.
改进的相对论量子化学计算ZORA方法   总被引:1,自引:0,他引:1  
王繁  黎乐民 《化学学报》2000,58(12):1499-1503
提出一种改进的ZORA(Zeroth-OrderRegularApproximationtotheDiracEquation)方法,其单电子方程为:[σ·p(c^2/2c^2-V~0)σ·p+V(r)]ψ=εψ。式中V~0为空间限域的势能函数:V~0(r=~A∑V~0^A(r~A),r~A=|r-R~A|,V~0^A(r~A)=V^A(r~A){1+exp[α(r~A-r~0^A]}^-^1。其中A表示分子的某个组成原子,R~A为A原子的位置矢量,V^A(r~A)为自由A原子的势函数,α和r~0^A为参数。改进的ZORA方法具有原来方法的所有优点,避免了原有ZORA方法因不满足标度变换不变性带来的缺陷,而且计算过程简单。具体计算表明,通过适当选择参数α和r~0^A,用本研究提出来的方法,在计算分子几何结构和键合能时,基本上消除了ZORA方法由于标度变换依赖性产生的误差。  相似文献   

18.
We carry out a systematic study of various ground state and response properties of homonuclear diatomic molecules (from hydrogen to rubidium, including transition metals) as a function of atomic number of constituent atoms. We perform the ground state and response property calculations by using state of the art density functional theory/time dependent density functional theory. We observe that several properties of homonuclear diatomic molecules show periodic variations along rows and columns of the periodic table. The periodic variations in the ground state properties of diatomic molecules may be explained by the nature and type of the bond that exists between the constituent atoms. Similarly, the periodic variations in the response properties such as static dipole polarizability and strength of the van der Waals interaction between diatomic molecules have been correlated with the variations in metallic/nonmetallic character of the elements along the periodic table. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号