首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using simple physical arguments, a local spin-polarized exchange potential, Vxσ, is constructed from the single-particle Hartree–Fock (HF ) potentials (generalized Slater method) that reduces to the usual Kohn–Sham (KS ) result in the uniform gas limit. Numerical results for 10 closed subshell atoms demonstrate that the total energy calculated employing this Vxσ is closer to the exact KS results than those of other standard exchange approximations with electron densities and highest occupied orbital eigenvalues that closely approximate the HF results.  相似文献   

2.
The local density approximation (LDA) to the exchange potential Vx( r ), namely the ρ1/3 electron gas form, was already transcended in Slater's 1951 paper. Here, using Dirac's 1930 form for the exchange energy density ? x( r ), the Slater (Sl) nonlocal exchange potential V( r ) is defined by 2? x( r )/ρ( r ). In spherical atomic ions, say the Be or Ne‐like series, this form V( r ) already has the correct behavior in both r → 0 and r → ∞ limits when known properties of the exchange energy density ? x( r ) and the ground‐state electron density ρ( r ) are invoked. As examples, some emphasis will first be given to the use of the so‐called 1/Z expansion in such spherical atomic ions, for which analytic results can be obtained for both ? x( r ) and ρ( r ) as the atomic number Z becomes large. The usefulness of the 1/Z expansion is directly demonstrated for the U atomic ion with 18 electrons by comparison with the optimized effective potential prediction. A rather general integral equation for the exchange potential is then proposed. Finally, without appeal to large Z, two‐level systems are considered, with specific reference to the Be atom and to the LiH molecule. In all cases treated, the Slater potential V( r ) is a valuable starting point, even though it needs appreciable quantitative corrections reflecting directly atomic shell structure. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

3.
Very recent criticisms of existing exchange-correlation functionals by Wanko et al. applied to systems of biological interest have led us to reopen the question of the ground-state conformer of glycine: the simplest amino acid. We immediately show that the global minimum of the Hartree–Fock (HF) ground-state leads to a planar structure of the five non-hydrogenic nuclei, in the non-ionized form NH2–CH2–COOH. This is shown to lie lower in energy than the zwitterion structure NHB3 +–CH2–COO?, as required by experiment. Refinement of the nuclear geometry using second-order Møller–Plesset perturbation theory (MP2) is also carried out, and bond lengths are found to accord satisfactorily with experimentally determined values. The ground-state electron density for the MP2 geometry is then redetermined by HF theory and equidensity contours are displayed. The HF first-order density matrix γ( r , r ′) is then used to obtain similar exchange-energy density (ε x ( r )) contours for the lowest conformer of glycine. At first sight, their shape looks almost the same as for the density ρ( r ), which seems to vindicate the LDA proportional to ρ( r )3/4. However, by way of an analytically soluble model for an atomic ion, it is shown that this has to be corrected to obtain an accurate HF exchange energy Ex as the volume integral of ε x ( r ). Finally, recognizing that for larger amino acids, the use of HF plus MP2 perturbation corrections will become prohibitive, we have used the HF information for ε x ( r ) and ρ( r ) to plot the truly non-local exchange potential proposed by Slater, from the density matrix γ( r , r ′). This latter calculation should be practicable for large amino acids, but there adopting Becke's one-parameter form of ε x ( r ) correcting LDA exchange. Some future directions are suggested.  相似文献   

4.
The exact expression for the Fermi potential yielding the Hartree–Fock electron density within an orbital‐free density functional formalism is derived. The Fermi potential, which is defined as that part of the potential that depends on the particles’ nature, is in this context given as the sum of the Pauli potential and the exchange potential. The exact exchange potential for an orbital‐free density functional formalism is shown to be the Slater potential.  相似文献   

5.
6.
Functional properties that are exact for the Hohenberg–Kohn functional may turn into mutually exclusive constraints at a given level of ansatz. This is exemplarily shown for the local density approximation. Nevertheless, it is possible to reach exactly the Kohn–Sham data from an orbital‐free density functional framework based on simple one‐point functionals by starting from the Levy–Perdew–Sahni formulation. The energy value is obtained from the density‐potential pair, and therefore does not refer to the functional dependence of the potential expression. Consequently, the potential expression can be obtained from any suitable model and is not required to follow proper scaling behavior.  相似文献   

7.
An attempt to construct a multiple core‐hole state within the optimized effective potential (OEP) methodology is presented. In contrast to the conventional Δ‐self‐consistent field method for hole states, the effects of removing an electron is achieved using some orthogonality constraints imposed on the orbitals so that a Slater determinant describing a hole state is constrained to be orthogonal to that of a neutral system. It is shown that single, double, and multiple core‐hole states can be treated within a unified framework and can be easily implemented for atoms and molecules. For this purpose, a constrained OEP method proposed earlier for excited states (Glushkov and Levy, J. Chem. Phys. 2007, 126, 174106) is further developed to calculate single and double core ionization energies using a local effective potential expressed as a direct mapping of the external potential. The corresponding equations, determining core‐hole orbitals from a one‐particle Schrödinger equation with a local potential as well as correlation corrections derived from the second‐order many‐body perturbation theory are given. One of the advantages of the present direct mapping formulation is that the effective potential, which plays the role of the Kohn–Sham potential, has the symmetry of the external potential. Single and double core ionization potentials computed with the presented scheme were found to be in agreement with data available from experiment and other calculations. We also discuss core‐hole state local potentials for the systems studied. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
We derive exact properties of the inhomogeneous electron gas in the asymptotic classically forbidden region at a metal–vacuum interface within the framework of local effective potential energy theory. We derive a new expression for the asymptotic structure of the Kohn–Sham density functional theory (KS‐DFT) exchange‐correlation potential energy vxc(r) in terms of the irreducible electron self‐energy. We also derive the exact asymptotic structure of the orbitals, density, the Dirac density matrix, the kinetic energy density, and KS exchange energy density. We further obtain the exact expression for the Fermi hole and demonstrate its structure in this asymptotic limit. The exchange‐correlation potential energy is derived to be vxc(z → ∞) = ?αKS,xc/z, and its exchange and correlation components to be vx(z → ∞) = ?αKS,x/z and vc(z → ∞) = ?αKS,c/z, respectively. The analytical expressions for the coefficients αKS,xc and αKS,x show them to be dependent on the bulk‐metal Wigner–Seitz radius and the barrier height at the surface. The coefficient αKS,c = 1/4 is determined in the plasmon‐pole approximation and is independent of these metal parameters. Thus, the asymptotic structure of vxc(z) in the vacuum region is image‐potential‐like but not the commonly accepted one of ?1/4z. Furthermore, this structure depends on the properties of the metal. Additionally, an analysis of these results via quantal density functional theory (Q‐DFT) shows that both the Pauli Wx(z → ∞) and lowest‐order correlation‐kinetic W(z → ∞) components of the exchange potential energy vx(z → ∞), and the Coulomb Wc(z → ∞) and higher‐order correlation‐kinetic components of the correlation potential energy vc(z → ∞), all contribute terms of O(1/z) to the structure. Hence correlations attributable to the Pauli exclusion principle, Coulomb repulsion, and correlation‐kinetic effects all contribute to the asymptotic structure of the effective potential energy at a metal surface. The relevance of the results derived to the theory of image states and to KS‐DFT is also discussed. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

9.
Using the static exchange‐correlation charge density concept, the total integrated exchange‐charge density function is calculated within the nonrelativistic spin‐restricted exchange‐only (i) optimized effective potential model, and (ii) nonvariational local potential derived from the exchange‐only work potential within the quantal density functional theory, for the ground‐state isoelectronic series: Ga+, Zn, Cu?; In+, Cd, Ag?; and Tl+, Hg, Au?. The difference between the exchange charge density function derived from these potentials is employed to evaluate the first‐order correlation‐kinetic contribution to the integrated exchange charge density. This contribution is found to be important for both the intra‐ and inter‐shell regions. Screening effects on the contribution due to the nd10 (n = 3–5) subshells are discussed through comparisons with similar calculations on Ca, Sr, and Ba, wherein nd10 electrons are absent. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

10.
In this work, local exchange potentials corresponding to the Hartree–Fock (HF) electron density have been obtained using the Zhao–Morrison–Parr method for a number of closed‐shell confined atoms and ions. The exchange potentials obtained and the resulting density were compared with those given by the Becke–Johnson (BJ) model potential. It is demonstrated that introducing a scaling factor to the BJ potential allows improving the quality of the resulting density. The optimum scaling factor increases with decreasing confinement radius. The performance of Karasiev and Ludeña's SCα‐LDA method as well as of the Becke‐88 exchange potential for reproducing the HF electron densities in confined atoms has been also examined. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
A new computer program for post‐processing analysis of quantum‐chemical electron densities is described. The code can work with Slater‐ and Gaussian‐type basis functions of arbitrary angular momentum. It has been applied to explore the basis‐set dependence of the electron density and its Laplacian in terms of local and integrated topological properties. Our analysis, including Gaussian/Slater basis sets up to sextuple/quadruple‐zeta order, shows that these properties considerably depend on the choice of type and number of primitives utilized in the wavefunction expansion. Basis sets with high angular momentum (l = 5 or l = 6) are necessary to achieve convergence for local properties of the density and the Laplacian. In agreement with previous studies, atomic charges defined within Bader's Quantum Theory of Atoms in Molecules appear to be much more basis‐set dependent than the Hirshfeld's stockholder charges. The former ones converge only at the quadruple‐zeta/higher level with Gaussian/Slater functions. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

12.
Electrostatic potential energies V(ϕ) of a non-perturbing, protonic charge at fixed distances r from the S atom in three cyclic thioethers were examined as functions of the angles ϕ made by the r-vector with the C2 axis (thiirane and 2,5-dihydrothiophene) or the local C2 axis (thietane). The electrostatic PE VHF(ϕ) of HF (HF modelled as an extended electric dipole) was also calculated and the results compared with geometries of the thioether⋯HF complexes calculated at the CCSD(T)-F12c/cc-pVTZ-F12 level. The latter reveal angular deviations θ ∼10-20° of the S⋯H F nuclei from collinearity in directions suggesting secondary interactions of F with H atom(s) of the rings. Angles ϕ made by the S⋯H hydrogen bond with the C2 (or local C2) axes in the complexes are systematically larger (∼4-9°) than indicated by the VHF(ϕ) functions. Minima in the simple V(ϕ) versus ϕ functions occur at values smaller (∼5-10°) than those in the VHF(ϕ) curves.  相似文献   

13.
Two approaches to approximate the Slater potential component of local exact exchange of density-functional theory are investigated. The first approach employs density fitting of the electrostatic potential integrals over two occupied orbitals and the other approach approximates the "exact" Slater potential with the potential derived from the Becke-Roussel [Phys. Rev. A. 39, 3761 (1989)] model of the exchange hole. In both cases significant time savings can be achieved for larger systems compared to the calculation of the numerical Slater potential. It is then analyzed how well the orbitals obtained from the various total exchange potentials reproduce Hartree-Fock energies and molecular properties. A large range of atoms and small molecules has been utilized, including the three DNA bases adenine, thymine, and cytosine.  相似文献   

14.
The difference between density functionals defined by energy criterion and density functionals defined by density criterion is studied for the exchange functional. It is shown that Slater potentials are exact exchange potentials in the sense that they yield the Hartree–Fock electron density if all operators are given by local expressions. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
An analysis of the structure of the optimized effective Kohn-Sham exchange potential vx and its gradient approximations is presented. The potential is decomposed into the Slater potential vs and the response of vs to density variations, vresp. The latter exhibits peaks that reflect the atomic shell structure. Kohn—Sham exchange potentials derived from current gradient approaches for the exchange energy are shown to be quite reasonable for the Slater potential, but they fail to approximate the response part, which leads to poor overall potentials. Improved potentials are constructed by a direct fit of vx with a gradient-dependent Padé approximant form. The potentials obtained possess proper asymptotic and scaling properties and reproduce the shell structure of the exact vx. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
We applied an improved long‐range correction scheme including a short‐range Gaussian attenuation (LCgau) to the Becke97 (B97) exchange correlation functional. In the optimization of LCgau‐B97 functional, the linear parameters are determined by least squares fitting. Optimizing μ parameter (0.2) that controls long‐range portion of Hartree‐Fock (HF) exchange to excitation energies of large molecules (Chai and Head‐Gordon, J Chem Phys 2008, 128, 084106) and additional short‐range Gaussian parameters (a = 0.15 and k = 0.9) that controls HF exchange inclusion ranging from short‐range to mid‐range (0.5–3 Å) to ground state properties achieved high performances of LCgau‐B97 simultaneously on both ground state and excited state properties, which is better than other tested semiempirical density functional theory (DFT) functionals, such as ωB97, ωB97X, BMK, and M0x‐family. We also found that while a small μ value (~0.2) in LC‐DFT is appropriate to the local excitation and intramolecular charge‐transfer excitation energies, a larger μ value (0.42) is desirable in the Rydberg excitation‐energy calculations. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

17.
The performance of the currently used generalized gradient approximation density functionals is analyzed using several simple, yet critical requirements. We analyze the effects of the self-interaction error, the inclusion of the exact exchange, and the parameter settings used in the popular three-parameter hybrid density functionals. The results show that the elimination of the self-interaction error from the current density functionals lead to very poor results for H2. The inclusion of the exact exchange does not significantly influence the self-interaction corrected results. The variation of the A, B, and C parameters of a hybrid DFT method influences the H(SINGLE BOND)H equilibrium bond length through a very simple linear equation, and it is possible to reproduce the experimental H(SINGLE BOND)H distance with appropriate selection of these parameters, although an infinite number of solutions exists. Similar results were obtained for the total energy and the electron density along the internuclear axis. The analysis of the exact KS potential at the bond critical point of the dissociating H2 molecule shows that, for this property, the second order Moller–Plesset perturbation theory yields a better potential than the density functionals studied in this article. © 1997 John Wiley & Sons, Inc. J Comput Chem 18 : 1534–1545, 1997  相似文献   

18.
A quantum chemical model is introduced to predict the H‐bond donor strength of monofunctional organic compounds from their ground‐state electronic properties. The model covers ? OH, ? NH, and ? CH as H‐bond donor sites and was calibrated with experimental values for the Abraham H‐bond donor strength parameter A using the ab initio and density functional theory levels HF/6‐31G** and B3LYP/6‐31G**. Starting with the Morokuma analysis of hydrogen bonding, the electrostatic (ES), polarizability (PL), and charge transfer (CT) components were quantified employing local molecular parameters. With hydrogen net atomic charges calculated from both natural population analysis and the ES potential scheme, the ES term turned out to provide only marginal contributions to the Abraham parameter A, except for weak hydrogen bonds associated with acidic ? CH sites. Accordingly, A is governed by PL and CT contributions. The PL component was characterized through a new measure of the local molecular hardness at hydrogen, η(H), which in turn was quantified through empirically defined site‐specific effective donor and acceptor energies, EEocc and EEvac. The latter parameter was also used to address the CT contribution to A. With an initial training set of 77 compounds, HF/6‐31G** yielded a squared correlation coefficient, r2, of 0.91. Essentially identical statistics were achieved for a separate test set of 429 compounds and for the recalibrated model when using all 506 compounds. B3LYP/6‐31G** yielded slightly inferior statistics. The discussion includes subset statistics for compounds containing ? OH, ? NH, and active ? CH sites and a nonlinear model extension with slightly improved statistics (r2 = 0.92). © 2008 Wiley Periodicals, Inc. J Comput Chem 2009  相似文献   

19.
Several different versions of density functional theory (DFT) that satisfy Hohenberg–Kohn theorems are characterized by different definitions of a reference or model state determined by an N‐electron ground state. A common formalism is developed in which exact Kohn–Sham equations are derived for standard Kohn–Sham theory, for reference‐state density functional theory, and for unrestricted Hartree–Fock (UHF) theory considered as an exactly soluble model Hohenberg–Kohn theory. A natural definition of exchange and correlation energy functionals is shown to be valid for all such theories. An easily computed necessary condition for the locality of exchange and correlation potentials is derived. While it is shown that in the UHF model of DFT the optimized effective potential (OEP) exchange satisfies this condition by construction, the derivation shows that this condition is not, in general, sufficient to define an exact local exchange potential. It serves as a test to eliminate proposed local potentials that are not exact for ground states. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 77: 521–525, 2000  相似文献   

20.
Abstract

Attention is focussed here on a variety of cylindrically symmetric inhomogeneous electron liquids. These include separable potentials in which a general variation along the (z) axis of cylindrical symmetry is combined with isotropic harmonic confinement in the (x, y) plane. in this case, an explicit differential equation is derived for the Slater sum along the z axis by projecting out of the (off-diagonal) canonical density matrix the states with zero angular momentum about the axis of symmetry. Some attention is then given to the calculation of the Slater sum for a hydrogen-like atom in a uniform electric field of arbitrary strength. the model of a separable potential with harmonic confinement, though no longer exact, is shown to lead directly to a (now approximate) equation for the Slater sum along the z axis for the Stark effect in hydrogen. Finally some further progress is shown to be possible in the extreme high field limit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号