首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The N(4S)+H2 reaction and its isotopic variants have been investigated by means of time‐dependent quantum wave packet with split operator method on the ground state potential energy surface (Zhai and Han, J. Chem. Phys. 2011, 135, 104314). The reaction probabilities, integral cross sections, branching ratio of the integral cross sections, and effect of vibrational excitation of H2, HD, and D2 diatomic molecules are presented and discussed. The results reveal that the intramolecular isotopic effect is greater than the intermolecular one, and that the vibrational excitation of the diatomic molecules can promote the progress of this reaction. In addition, a limited number of rigorous Coriolis coupling calculations of the integral cross sections of the N(4S)+H2 reaction have been carried out. Also shown is that since the Coriolis coupling plays a small part in this accurate quantum calculation, the cheaper centrifugal sudden calculations here reported are effective for this reactive system. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
We present accurate quantum dynamic calculations of the reaction C(1D) + HD on the latest version of the potential energy surface [Zhang et al., J. Chem. Phys. 140, 234301 (2014)]. Using a Chebyshev real wave packet method with full Coriolis coupling, we obtain the initial state‐specified ( ) reaction probabilities, integral cross sections, and rate constants. The resulting probabilities display oscillatory structures due to numerous long‐lived resonances supported by the deep potential well. The calculated rate constants and CD/CH product branching ratio at room temperature are in reasonably good agreement with the experimental measurements.  相似文献   

3.
We present a detailed quasiclassical trajectory (QCT) study of the dynamics corresponding to the reaction H + LiH proceeding via depletion and H‐exchange paths on a new potential energy surface of the electronic ground state. The effects of collision energy and reagent initial vibrational excitation on the reaction probability and cross sections are studied over a wide range of collision energies. The QCT‐calculated reaction probability and cross sections are in good agreement with previous time‐dependent wave packet results. More importantly, we found that the vibrational excitation of LiH molecule inhibits the LiH depletion reaction, whereas it promotes the H‐exchange reaction. In addition, the differential cross sections calculated for the depletion reaction at different collision energies and excitation states indicate a strong forward scattering of the product molecule H2. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
The time‐independent Schrödinger equation for the HD+ molecule is solved beyond the Born–Oppenheimer (B‐O) approximation. In the adiabatic representation, the wavefunction of the ground vibrational eigenstate is found to contain two parts: One is on the ground ( ) state which is dominant, and the other is on the repulsive excited ( ) state in the range from R = 0.0 to R = 5.0 Bohr. This is because the nonadiabatic coupling between the ground ( ) and excited ( ) states is strong in that region. The influences of the nonadiabatic coupling on the vibrational eigenfunctions are discussed in detail.  相似文献   

5.
A full dimensional time‐dependent quantum wavepacket approach is used to study the photodissociation dynamics of nitrous oxide for the X → 2 bound–bound transition based on new highly accurate potential energy and transition dipole moment surfaces. The computed 2 absorption spectra at room temperature are characterized by sharp vibrational structures that contribute slightly to the diffuse vibrational structures around the maximum peak at 180 nm of the first ultraviolet absorption band (from the contribution of 2 , 1 , and 2 states) of N2O. Transitions from different initial rovibrational states reveal that the sharp structures arise mainly from N2? O bending vibrations, whereas, at higher temperatures, the N2? O and N? NO stretching vibrations are responsible for enhancing the intensity of the structures. At absorption wavelengths 166 nm and 179 nm, vibrational quantum state distributions of N2 product fragments decrease monotonically with increasing vibrational quantum number v = 0, 1, 2. At 166 nm, rotational quantum state distributions of N2 at fixed v = 0 and v = 1 display multimodal profiles with maximum peaks at j = 77 and j = 75, respectively, whereas, the distributions at the 179 nm absorption wavelength display bimodal profiles with maximum peaks at j = 73 and j = 71, respectively. Accordingly, the presence of rotationally hot N2 from previous experimental and theoretical works in the first band strongly implies a significant influence of the 2 state in determining the final dissociation pathway of N2 + O. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
The octahedral Au6 core is explored for the formation of novel SP3‐hybrid superatomic molecules by considering and Au6 clusters (X= F, Cl, Br, I). The bonding between the four capping atoms and the Au6 core requires a combination of 1S and 1P shells of the core leading to a set of four equivalent hybrid orbitals. Thus, combining the superatom concept with both the Lewis structure model and VSEPR theory contributes to the rationalization of structure and bonding in metal clusters. For example, our results consider the Au6 clusters as analogues of the simplest perhalogenated hydrocarbon, CX4.  相似文献   

7.
The geometric and electronic structures of a series of silicon fluorides (n = 4 ? 6) were computationally studied with the aid of density functional theory (DFT) method with B3LYP and M06‐2X functionals and coupled cluster (CCSD and CCSD(T)) methods with 6‐311++G(d,p) basis set. The nature of the Si‐F bonds in these compounds was analyzed in the framework of the natural bond orbital theory and natural resonance theory. Energy characteristics (heats of reactions and energy barriers) of the dissociation reactions → SiF4 + F and → + F were calculated using the DFT and CCSD methods. The potential energy surface of elimination of a fluoride anion from has a specific topology with valley‐ridge inflection points corresponding to bifurcations of the minimal energy reaction path. © 2016 Wiley Periodicals, Inc.  相似文献   

8.
9.
In the course of a 5 μm high‐resolution infrared study of laser ablation products from carbon–sulfur targets, the ν1 vibrational mode region of linear C3S has been studied continuously from 2046 to 2065 cm?1. Besides the prominent vibrational fundamental, the region was found to feature the , and even hot bands, the latter two of which were observed for the first time. Owing to the high signal‐to‐noise ratio obtained, the ν1 mode of S could also be observed in natural abundance for the first time at high spectral resolution in the infrared. At 2061 cm?1, hidden inside the branch of the C3S ν1 fundamental mode, a weak new band is observed which exhibits very tight line spacing and stems from a heavy both carbon and sulfur containing carrier. On the basis of high‐level quantum‐chemical calculations of selected carbon–sulfur chains and other carbon‐rich cumulenes, this feature is attributed to the ν5 vibrational fundamental of linear SC7S, which stands for the first gas‐phase spectroscopic detection of this long cumulenic chain.  相似文献   

10.
A theoretical procedure has been developed and implemented to calculate the optical rotation of chiral molecules in ordered phase via origin‐independent diagonal components , of the optical activity tensor and origin‐independent components , for , of the mixed electric dipole‐electric quadrupole polarizability. Origin independence was achieved by referring these tensors to the principal axis system of the electric dipole dynamic polarizability at the same laser frequency ω. The approach has been applied, allowing for alternative quantum mechanical methods based on different gauges, to estimate near Hartree–Fock values for three chiral molecules, (2R)‐N‐methyloxaziridine C2NOH5, (2R)‐2‐methyloxirane (also referred to as propylene oxide) C3OH6, and ( )‐1,3‐dimethylallene C5H8, at two frequencies. The theoretical predictions can be useful for an attempt at measuring correspondent experimental values in crystal phase. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
In order to study the electronic structure and structural stability of borane and carborane C2Bn?2Hn (5 ≤ n ≤ 7) clusters, especially the stability difference between the borane and carborane C2B3H5. The frontier orbital energy levels of the borane and carborane C2Bn?2Hn (5 ≤ n ≤ 7) clusters are calculated at CCSD(T)/aug‐cc‐pVXZ//B3LYP/def2‐TZVPP level. The results are further analyzed by qualitative frontier orbital method based on the cap–ring interaction. The results reveal that: (1) the larger Egap(HOMO‐LUMO energy gap) of carborane C2Bn?2Hn (5 ≤ n ≤ 7) clusters than borane (5 ≤ n ≤ 7) clusters originates from the more effective cap–ring orbital overlap of carborane C2Bn?2Hn (5 ≤ n ≤ 7) clusters than that of borane (5 ≤ n ≤ 7) clusters; (2) the smallest Egap of the borane results from the highest energy level of the ring symmetry‐adapted linear combination orbital of cluster; and (3) the largest Egap of the carborane C2B3H5 is induced by the most effective cap–ring orbital interaction of C2B3H5 cluster. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
The time‐dependent wavepacket method is used to study the reaction dynamics of S(3P) + HD (v = 0, 1, 2) on the adiabatic 13A″ potential energy surface constructed by Han and coworkers [J. Chem. Phys. 2012, 136, 094308]. The reaction probabilities and integral cross sections as a function of collision energy are obtained and discussed. The results calculated by using the CC and the CS approximation have been compared, which suggests that for this direct abstraction reaction, the cheaper CS approximation calculation is valid enough in the quantum calculation. The investigation also shows that the reaction probabilities and integral cross sections tend to increase with collision energy. By analyzing the v‐dependent behavior of the integral cross sections, the significant effect of the vibrational excitation of HD is found. Also found in the calculation is a significant resonance feature in the reaction probabilities versus collision energy. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
The H + F2 → HF + F reaction on ground state potential energy surface is investigated using the quantum mechanical real wave packet and Flux analysis method based on centrifugal sudden approximation. The initial state selected reaction probabilities for total angular momentum J = 0 have been calculated by both methods while the probabilities for J > 0 have been calculated by Flux analysis method. The initial state selected reaction probabilities, integral cross sections and rate coefficients have been calculated for a broad range of collision energy. The results show a large rotational enhancement of the reaction probability. Some resonances were seen in the state‐to‐state reaction probabilities while state‐to‐all reaction probabilities and the reaction cross section do not manifest any oscillations and the initial state selected reaction rate constants are sensitive to the temperature. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

14.
A new series of divalent boron‐rare gas cations (Rg = He ∼ Rn, n = 1–4) have been predicted theoretically at the B3LYP, MP2, and CCSD(T) levels to present the structures, stability, charge distributions, bond natures, and aromaticity. The Rg B bond energies are quite large for heavy rare gases and increase with the size of the Rg atom. Because of steric hindrance new Rg atoms introduced to the B4 ring will weaken the Rg B bond. Thus in the Rg B bond has the largest binding energy 90–100 kcal/mol. p‐ has a slightly shorter Rg B bond length and a larger bond energy than o‐ . NBO and AIM analyses indicate that for the heavy Rg atoms Ar ∼ Rn the B Rg bonds have character of typical covalent bonds. The energy decomposition analysis shows that the σ‐donation from rare gases to the boron ring is the major contribution to the Rg B bonding. Adaptive natural density partitioning and nuclear‐independent chemical shift analyses suggest that both and have obvious aromaticity.  相似文献   

15.
The quantum mechanics (QM) and quasiclassical trajectory (QCT) calculations have been carried out for the title reaction with the ground minimal allowed rotational state of CH (j = 1) on the 1 1A′ potential energy surface. For the reaction probability at total angular momentum J = 0, a similar trend of the QM and QCT calculations is observed, and the QM results are larger than the latter almost in the whole considered energy range (0.1–1.5 eV). The QCT integral cross sections are larger than the QM results with centrifugal sudden approximation, while smaller than those from QM method including Coriolis coupling for collision energies bigger than 0.25 eV. The quantum wave‐packet computations show that the Coriolis coupling effects get more and more pronounced with increasing of J. In addition to the scalar properties, the stereodynamical properties, such as the average rotational alignment factor <P2( j′?k )>, the angular distributions Pr), P(?r), Pr,?r), and the polarization‐dependent generalized differential cross sections have been explored in detail by QCT approach. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
The development of selective lymphocyte‐specific kinase (Lck) inhibitors has attracted much attention for the research of the treatment of T‐cell mediated autoimmune and inflammatory diseases. In the present work, three‐dimensional quantitative structure–activity relationship (3D‐QSAR) analyses are performed on a novel series of 4‐amino‐6‐benzimidazole‐pyrimidines acting as Lck inhibitors. The established 3D‐QSAR models show significant statistical quality and satisfactory predictive ability, with high q2 and R2 values: the comparative molecular field analysis (CoMFA) model (q2 = 0.802, R2 = 0.991), and the comparative molecular similarity indexes analysis (CoMSIA) model (q2 = 0.731, R2 = 0.982). The systemic external validation indicates that both CoMFA and CoMSIA models are quite robust and possess high predictive abilities with values of 0.881 and 0.877, values of 0.897 and 0.847, values of 0.897 and 0.850, and values of 0.897 and 0.854, respectively. Several key structural features accounting for the inhibitory activities of these compounds are discussed. Based on established models and design considerations, six new compounds with significantly improved activities are theoretically designed, which still await experimental confirmation and evaluation. These theoretical results may provide a useful reference for understanding the action mechanism and designing novel potential Lck inhibitors. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
Due to one of the most representative contributions to the energy in diatomic molecules being the vibrational, we consider the generalized Morse potential (GMP) as a typical interaction for one‐dimensional microscopic systems, which describes local anharmonic effects. From the Eckart potential (EP) model, it is possible to find a connection with the GMP model, as well as obtaining the analytical expression for the energy spectrum because it is based on algebras. This gives the macroscopic properties such as vibrational mean energy U, specific heat C, Helmholtz free energy F, and entropy S for a heteronuclear diatomic system, as well as with the exact partition function and its approximation for the high temperature region. Finally, a comparison is made between the graphs of some thermodynamic functions obtained with the GMP and the Morse potential (MP) for molecules.  相似文献   

18.
In this work, we present a quantum mechanical treatment of the three‐body molecular system in the Born–Oppenheimer (BO) approximation, were the nuclei dynamics is evaluated over the potential energy surfaces (PES) induced by the electronic states. The PES corresponding to the two lowest electronic levels are the ones described by Martinazzo et al. (Chem. Phys. 2003, 287, 335), and are used to write the three‐body Schrdinger equation of the three atomic system. We use the generalized Sturmian functions method to expand the wave functions in each (distinguishable) pair of relative coordinates or Jacobi pairs, and analyze the convergence differences between the series. A partial‐wave decomposition of the potential is proposed to simplify the Hamiltonian matrix element calculation. Bound states are considered for the ground and first excited electronic PES, the spreading of energies after sudden electronic transitions studied, and the break‐up probability induced by the sudden change of the PES evidenced.  相似文献   

19.
Forward and backward electron/proton ionization/dissociation spectra from one‐dimensional non‐Born‐Oppenheimer H2 molecule exposed to ultrashort intense laser pulses ( W/cm2, λ = 800 nm) have been computed by numerically solving the time‐dependent Schrödinger equation. The resulting above‐threshold ionization and above‐threshold dissociation spectra exhibit the characteristic forward‐backward asymmetry and sensitivity to the carrier‐envelope phase (CEP), particularly for high energies. A general framework for understanding CEP effects in the asymmetry of dissociative ionization of H2 has been established. It is found that the symmetry breaking of electron‐proton distribution with π periodic modulation occurs for all CEPs except for ( integer) and the largest asymmetry coming from the CEP of . At least one of the electron and proton distributions is asymmetric when measured simultaneously. Inspection of the nuclear and electron wave packet dynamics provides further information about the relative contribution of the gerade and ungerade states of to the dissociation channel and the time delay of electrons in asymmetric ionization. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
Trifluoromethylation of acetonitrile with 3,3‐dimethyl‐1‐(trifluoromethyl)?1λ3,2‐ benziodoxol is assumed to occur via reductive elimination (RE) of the electrophilic CF3‐ligand and MeCN bound to the hypervalent iodine. Computations in gas phase showed that the reaction might also occur via an SN2 mechanism. There is a substantial solvent effect present for both reaction mechanisms, and their energies of activation are very sensitive toward the solvent model used (implicit, microsolvation, and cluster‐continuum). With polarizable continuum model‐based methods, the SN2 mechanism becomes less favorable. Applying the cluster‐continuum model, using a shell of solvent molecules derived from ab initio molecular dynamics (AIMD) simulations, the gap between the two activation barriers ( ) is lowered to a few kcal mol?1 and also shows that the activation entropies ( ) and volumes ( ) for the two mechanisms differ substantially. A quantitative assessment of will therefore only be possible using AIMD. A natural bond orbital‐analysis gives further insight into the activation of the CF3‐reagent by protonation. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号