首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Highly efficient red–green–blue (RGB) tricolor luminescence switching was demonstrated in a bicomponent solid film consisting of (2Z,2′Z)‐2,2′‐(1,4‐phenylene)bis(3‐(4‐butoxyphenyl)acrylonitrile) (DBDCS) and (2Z,2′Z)‐3,3′‐(2,5‐bis(6‐(9H‐carbazol‐9‐yl)hexyloxy)‐1,4‐phenylene)bis(2‐(3,5‐bis(trifluoromethyl)phenyl)acrylonitrile) (m‐BHCDCS). Reversible RGB luminescence switching with a high ratiometric color contrast (λem=594, 527, 458 nm for red, green, and blue, respectively) was realized by different external stimuli such as heat, solvent vapor exposure, and mechanical force. It was shown that Förster resonance energy transfer in the bicomponent mixture could be efficiently switched on and off through supramolecular control.  相似文献   

2.
Red emission is one of the three primary colors that are essential for the realization of full‐color displays and solid‐state lightings. A high solid‐state efficiency is a crucial factor for the applications in organic light‐emitting diodes (OLEDs). In this work, two new donor‐acceptor‐donor type phenanthro[9,10‐d]imidazole (PIM)‐based derivatives, (2Z,2′Z)‐2,2′‐(1,4‐phenylene)bis(3‐(4‐(1‐phenyl‐1H‐phenanthro[9,10‐d]imidazol‐2‐yl)phenyl)acrylonitrile) ( PIDSB ) and 2,3‐bis(4′‐(1‐phenyl‐1H‐phenanthro[9,10‐d]imidazol‐2‐yl)‐[1,1′‐biphenyl]‐4‐yl)fumaronitrile ( PIDPh ), are designed and synthesized. Both of them possess high thermal stabilities. PIDPh shows typical characteristics of aggregation‐induced emission enhancement, while PIDSB displays an aggregation‐caused quenching effect. They both exhibit significant red‐shifted emissions compared with PIM owing to intramolecular charge transfer. In the film state, the emission peaks of PIDSB and PIDPh are located at 538 nm and 605 nm with high photoluminescent quantum yields of 63.82 % and 41.26 %, respectively. The non‐doped OLED using PIDPh as the active layer shows the maximum external quantum efficiency of 2.06 % with a very low efficiency roll‐off, and exhibits the electroluminescent peak at 640 nm with a Commission Internationale de l′Éclairage coordinate of (0.617,0.396), meeting well the criteria of red OLEDs.  相似文献   

3.
Poly(p‐phenylene vinylene) (PPV), poly(2,5‐dioctyl‐p‐phenylene vinylene) (PDOPPV), and poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐p‐phenylene vinylene] (MEHPPV) were synthesized by a liquid–solid two‐phase reaction. The liquid phase was tetrahydrofuran containing 1,4‐bis(bromomethyl)benzene, 1,4‐bis(chloromethyl)‐2,5‐dioctylbenzene, or 1,4‐bis(chloromethyl)‐2‐methoxyl‐5‐(2′‐ethylhexyloxy)benzene as the monomer and a certain amount of tetrabutylammonium bromide as a phase‐transfer catalyst. The solid phase consisted of potassium hydroxide particles with diameters smaller than 2 mm. The experimental results demonstrated that the reaction conversions of PPV and PDOPPV were fairly high (~65%), but the conversion of MEHPPV was only 45%. Moreover, gelation was found in the polymerization processes. As a result, PPV was insoluble and PDOPPV and MEHPPV were partially soluble in the usual organic solvents, such as tetrahydrofuran and chloroform. Soluble PDOPPV and MEHPPV were obtained with chloromethylbenzene or bromomethylbenzene as a retardant regent. The molar mass of soluble PDOPPV was measured to be 2 × 104 g mol?1, and that of MEHPPV was 6 × 104 g mol?1. A thin, compact film of MEHPPV was formed via spin coating, and it emitted a yellow light. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 449–455, 2003  相似文献   

4.
A simple and efficient one‐pot synthesis of alkyl‐2‐(alkylimino)‐4‐methyl‐3‐phenyl‐2,3‐dihydrothiazole‐5‐carboxylate and dialkyl 3,3′‐(1,4‐phenylene)‐bis‐[2‐(alkylimino)‐4‐methyl‐2,3‐dihydrothiazole‐5‐carboxylate] derivatives from the reaction of phenylisothiocyanate (and also 1,4‐phenylene diisothiocyanate) and primary alkylamines in the presence of 2‐chloro‐1,3‐dicarbonyl compounds is described. This new protocol has several advantages such as lack of necessity of the catalyst and solvent, good yields,mild conditions and short times for reaction.  相似文献   

5.
Green‐emitting substituted poly[(2‐hexyloxy‐5‐methyl‐1,3‐phenylenevinylene)‐alt‐(2,5‐dihexyloxy‐1,4‐phenylenevinylene)]s ( 6 ) were synthesized via the Wittig–Horner reaction. The polymers were yellow resins with molecular weights of 10,600. The ultraviolet–visible (UV–vis) absorption of 6 (λmax = 332 or 415 nm) was about 30 nm redshifted from that of poly[(2‐hexyloxy‐5‐methyl‐1,3‐phenylenevinylene)‐alt‐(1,4‐phenylenevinylene)] ( 2 ) but was only 5 nm redshifted with respect to that of poly[(1,3‐phenylenevinylene)‐alt‐(2,5‐dihexyloxy‐1,4‐phenylenevinylene)] ( 1 ). A comparison of the optical properties of 1 , 2 , and 6 showed that substitution on m‐ or p‐phenylene could slightly affect their energy gap and luminescence efficiency, thereby fine‐tuning the optical properties of the poly[(m‐phenylene vinylene)‐alt‐(p‐phenylene vinylene)] materials. The vibronic structures were assigned with the aid of low‐temperature UV–vis and fluorescence spectroscopy. Light‐emitting‐diode devices with 6 produced a green electroluminescence output (emission λmax ~ 533 nm) with an external quantum efficiency of 0.32%. Substitution at m‐phenylene appeared to be effective in perturbing the charge‐injection process in LED devices. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1820–1829, 2004  相似文献   

6.
The polymerization of bis(4‐ethynylphenyl)methylsilane catalyzed by RhI(PPh3)3 afforded a regio‐ and stereoregular hyperbranched polymer, hb‐poly[(methylsilylene)bis(1,4‐phenylene‐trans‐vinylene)] (poly( 1 )), containing 95% trans‐vinylene moieties. The weight loss of this polymer at 900°C in N2 was 9%. Poly( 1 ) displayed an absorption due to π‐π* transition around 275 nm as a shoulder and a weak absorption around 330 nm due to π‐to‐σ charge transfer, which was hardly seen in the corresponding linear polymer.  相似文献   

7.
An interesting flourophore, 4‐(2,5‐dimethoxyphenylmethelene)‐2‐phenyl‐5‐oxazolone (DMPO) was synthesized by mixing an equivalent molar quantity of hippuric acid and 2,5‐dimethoxybenzaldehyde in acetic anhydride in the presence of anhydrous sodium acetate. The absorption and fluorescence characteristics of 4‐(2,5‐dimethoxy‐phenylmethelene)‐2‐phenyl‐5‐oxazolone (DMPO) were investigated in different solvents. DMPO dye exhibits red shift in both absorption and emission spectra as solvent polarity increases, indicating change in the dipole moment of molecules upon excitation due to an intramolecular charge transfer interaction. The fluorescence quantum yield depends strongly on the properties of the solvents, which was attributed to positive and negative solvatokinetic effects. A crystalline solid of DMPO gave strong excimer like emission at 630 nm due to the excitation of molecular aggregates. This is expected from the idealized crystal structure of the dye that belongs to the B‐type class of Steven's Classification. DMPO displayed fluorescence quenching by triethylamine via nonemissive exciplex formation.  相似文献   

8.
Several 3,3′‐(1,4‐phenylene)bis(1,5‐diones) and their chalcone precursors have been prepared in good to excellent yield via aldol addition and Michael addition starting from 3‐acetyl‐2,5‐dimethylfuran or 3‐acetyl‐2,5‐dimethyl‐thiophene with terephthalaldehyde in the presence of appropriate base NaOH or lithium diisopropylamide. The kind and amount of alkali played a critical role in improving the reaction rates and yields of the products. J. Heterocyclic Chem., (2011).  相似文献   

9.
《Chemphyschem》2003,4(3):249-259
Two‐photon absorption cross sections δ and solvatochromic properties were determined for a series of quadrupolar and dipolar compounds by using femtosecond excitation in the spectral range between 710 and 960 nm. The compounds investigated were distyrylbenzenes and polyenes bearing appropriate π or σ acceptors. The δ values for the centrosymmetric compounds trans,trans‐1,4‐bis[2‐(2′,5′‐dihexyloxy)phenylethenyl]‐2,3,5,6‐tetrafluorobenzene ( 6 ), trans,trans‐1,4‐bis[2‐(4′‐dibutylamino)phenylethenyl]‐2,3,5,6‐tetrafluorobenzene ( 2 ), trans,trans‐1,4‐bis[2‐(4′dimethylamino)phenylbutadienyl]‐2,3,5,6‐tetrafluorobenzene ( 7 ), trans,trans‐1,4‐bis[2‐(4′‐dimethylamino)phenylethenyl]‐2,5‐dicyanobenzene ( 4 ) and trans,trans‐1,4‐bis[2‐(4′‐dimethylamino)phenylethenyl]‐2‐propylsulfonyl‐5‐(2‐ethylhexyl)sulfonylbenzene ( 3 ) are on the order of 600, 1400, 1700, 3000, and 4100×10?50 cm4 s photon?1, respectively. The corresponding dipolar compounds trans‐2‐(4′‐dimethylaminophenyl)ethenyl‐2,3,4,5,6‐pentafluorobenzene ( 8 ), trans‐4‐(4′‐dimethylaminophenyl)butadienyl‐2,3,4,5,6‐pentafluorobenzene ( 9 ), trans‐6‐(4′‐dimethylaminophenyl)hexatrienyl‐2,3,4,5,6‐pentafluorobenzene ( 10 ) were additionally investigated. All centrosymmtric compounds are good fluorescent materials, while the dipolar chromophores 8 10 exhibit low fluorescence quantum yields. Solvatochromism was also observed for the fluorophores 2 10 as a result of intramolecular charge transfer (ICT). Furthermore, a reasonable correlation was obtained between measured and calculated δ. Quantum chemical calculations were performed by using the INDO Hamiltonian with a MRDCI scheme. The results show that the sum over states (SOS) expression for the second hyperpolarizability γ is appropriate to describe the mechanism of two‐photon absorption. Mechanistic investigations of quadrupolar compounds showed that the energy of the two‐photon excited state is higher than S1.  相似文献   

10.
The new blue light polymer, poly(1′,4′‐phenylene‐1″,4″‐[2″‐(2″″‐ethylhexyloxy)]phenylene‐1‴,4‴‐phenylene‐2,5‐oxadiazolyl) (PPEPPO) was synthesized through the Suzuki reaction of diboronic acid, 2‐methoxy‐[5‐(2′‐ethylhexyl)oxy]‐1,4‐benzene diboronic acid (MEHBBA) and dibromide, 2,5‐bis(4′‐bromophenyl)‐1,3,4‐oxadiazole. This polymer was characterized with various spectroscopic methods. The solid PL spectrum of PPEPPO has a maximum peak at 444 nm corresponding to blue light. Blue LED has been fabricated using this polymer as the electroluminescent layer, ITO as the anode, and aluminum as cathode. This device emitted a blue light, with 40 V of turn‐on voltage. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3086–3091, 2000  相似文献   

11.
A phenylenevinylene‐thiophene‐phenyleneethynylene copolymer, poly{[1′,4′‐bis‐(thienyl‐vinyl)]‐2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylene‐vinylene‐alt‐1,4‐dioctyloxyl‐phenyleneethynylene}(PTPPV‐ PPE), was synthesized by the Sonogashira Pd‐catalyzed cross‐coupling reaction. The copolymer possesses higher thermal decomposition temperature (Td = 382°C) compared with poly{[1′,4′‐bis‐ (thienyl‐vinyl)]‐2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylene‐vinylene} (PTPPV). The absorption and photoluminescence (PL) peaks of PTPPV‐PPE solution and solid film locate in between those of the homopolymers of PTPPV and poly(1,4‐dioctyloxyl‐phenyleneethynylene) (PPE), and closer to that of PTPPV. Photovoltaic cell was fabricated based on the blend of PTPPV‐PPE and PCBM with a weight ratio of 1:1. The primary result shows an open circuit voltage (Voc) of 0.72 V which is higher than that of the PTPPV (0.67 V), and a power conversion efficiency (PCE) of 0.3% under the illumination of AM1.5, 100 mW/cm2 which is much better than that of PPEs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
A new (S)‐binaphthalene‐based polymer ( P ‐ 1 ) was synthesized by the polymerization of 5,5′‐((2,5‐dibutoxy‐1,4‐phenylene)bis(ethyne‐2,1‐diyl))bis(2‐hydroxy‐3‐(piperidin‐1‐ylmethyl) benzaldehyde ( M ‐ 1 ) with (S)‐2,2′‐dimethoxy‐(1,1′‐binaphthalene)‐3,3′‐diamine ( M ‐ 2 ) through the formation of a Schiff base; the corresponding chiral polymer ( P ‐ 2 ) could be obtained by the reduction of polymer P ‐ 1 with NaBH4. Chiral polymer P ‐ 1 exhibited a remarkable “turn‐on” fluorescence‐enhancement response towards (D )‐phenylalaninol and excellent enantioselective recognition behavior with enantiomeric fluorescence difference ratios (ef) as high as 8.99. More importantly, chiral polymer P ‐ 1 displays a bright blue fluorescence color change upon the addition of (D )‐phenylalaninol under a commercially available UV lamp, which can be clearly observed by the naked eye. On the contrary, chiral polymer P ‐ 2 showed weaker enantioselective fluorescence ability towards the enantiomers of phenylalaninol.  相似文献   

13.
The synthesis of new random poly(arylene‐vinylene)s containing the electron withdrawing 3,7‐dibenzothiophene‐5,5‐dioxide unit was achieved by the Suzuki–Heck cascade polymerization reaction. The properties of poly[9,9‐bis(2‐ethylhexyl)‐2,7‐fluorenylene‐vinylene‐co‐3,7‐dibenzothiophene‐5,5‐dioxide‐vinylene] (50/50 mol/mol, P1 ) and poly[1,4‐bis(2‐ethylhexyloxy)‐2,5‐phenylene‐vinylene‐co‐3,7‐dibenzothiophene‐5,5‐dioxide‐vinylene] (50/50 mol/mol, P2 ) were compared with those of terpolymers obtained by combining the fluorene, dibenzothiophene, and 1,4‐bis(2‐ethylexyloxy)benzene in 20/40/40 ( P3 ), 50/25/25 ( P4 ), and 80/10/10 ( P5 ) molar ratios. The polymers were characterized by 1H NMR and IR, whereas their thermal properties were investigated by TGA and DSC. Polymers P1–5 are blue–green emitters in solution (λem between 481 and 521 nm) whereas a profound red shift observed in the solid state is emission (λem from 578 to 608 nm) that can be attributed both to the charge transfer stabilization exerted by the polar medium and to intermolecular interactions occurring in the solid state. Cyclic voltammetry permitted the evaluation of the ionization potentials and also revealed a quasi‐reversible behavior in the reduction scans for the polymers ( P1–4 ) containing the higher amounts of 3,7‐dibenzothiophene‐5,5‐dioxide units. Electroluminescent devices with both ITO/PEDOT‐PSS/ P1–5 /Ca/Al (Type I) and ITO/PEDOT‐PSS/ P1–5 /Alq3/Ca/Al (Type II) configuration were fabricated showing a yellow to yellow–green emission. In the case of P4 , a luminance of 1835 cd/m2 and an efficiency of 0.25 cd/A at 14 V were obtained for the Type II devices. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2093–2104, 2009  相似文献   

14.
Tandem aza‐Wittig reaction of iminophosphorane with 1, 4‐phenylene diisocyanate followed by intramolecular heteroconjugate addition annulation after addition of a nucleophilic reagent (amine, phenol, and alcohol), in the presence of catalytic K2CO3 or NaOR, gives selectively the functionalized substituted 2, 2′‐di(alkylamino, aryloxy)‐3, 3′‐(1, 4‐phenylene)bis(thieno[3, 2‐d]pyrimidin‐4(3H)‐ones) and 2, 2′‐di(alkylamino or alkoxy)‐3, 3′‐(1, 4‐phenylene)bis(3, 5, 6, 7‐tetrahydro‐4H‐cyclopenta[4, 5]thieno[2, 3‐d]pyrimidin‐4‐ones).  相似文献   

15.
Reaction of 2,5‐bis(dibromoboryl)thiophene ( 4 ) or 1,4‐bis(dibromoboryl)benzene ( 6 ) with two equivalents of N,N′‐dilithiated 2,3‐diaminopyridine ( 3 ) led to the generation of the pyridodiazaboroles 5 and 7 in which the two diazaborole rings are linked by 2,5‐thiophen‐diyl or 1,4‐phenylene units via the boron atom. The novel compounds were characterized by elemental analyses and spectroscopy (1H‐, 11B‐, 13C‐NMR, MS, and UV‐VIS). The molecular structure of 5 was elucidated by X‐ray diffraction. Cyclovoltammograms of 5 and 7 show two irreversible oxidation waves at 0.76 and 0.73 V, respectively vs Fc/Fc+. The novel compounds display intense blue luminescence with Stokes shifts of 76 and 74 nm and relative quantum yields of 39 and 43 % vs Coumarin 120 (Φ = 50 %).  相似文献   

16.
Three new conjugated poly(p‐phenylene vinylene) (PPV) derivatives bearing triphenylamine side‐chain through a vinylene bridge, poly(2‐(4′‐(diphenylamino)phenylenevinyl)‐1,4‐phenylene‐vinylene) (DP‐PPV), poly(2‐(3′‐(3″,7″‐dimethyloctyloxy)phenyl)‐1,4‐phenylenevinylene‐alt‐2‐(4′‐ (diphenylamino)phenylenevinyl)‐1,4‐phenylenevinylene) (DODP‐PPV), and poly(2‐(4′‐(diphenylamino)phenylenevinyl)‐1,4‐phenylenevinylene‐co‐2‐(3′,5′‐bis(3″,7″‐dimethyloctyloxy)‐1,4‐phenylenevinylene) (DP‐co‐BD‐PPV), were synthesized according to the Gilch or Wittig method. Among the three polymers, the copolymer DP‐co‐BD‐PPV is soluble in common solvents with good thermal stability with 5% weight loss at temperatures higher than 386°C. The weight‐average molecular weight (Mw) and polydispersity index (PDI) of DP‐co‐BD‐PPV were 1.83 × 105 and 2.33, respectively. The single‐layer polymer light‐emitting diodes (PLEDs) with the configuration of Indium tin oxide (ITO)/poly (3,4‐ethylenedioxythiophene): poly(4‐styrene sulfonate)(PEDOT:PSS)/DP‐co‐BD‐PPV/Ca/Al were fabricated. The PLED emitted yellow‐green light with the turn‐on voltage of ca. 4.9 V, the maximum luminance of ca. 990 cd/m2 at 15.8 V, and the maximum electroluminescence (EL) efficiency of 0.22 cd/A. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Two new low‐bandgap alternating copolymers (CEHTF and CEHTP) consisting of 4,6‐bis(3′‐(2‐ethylhexyl)thien‐2′‐yl)thieno[3,4‐c][1,2,5] thiadiazole and 9,9‐bis(2‐ethylhexyl)fluorene or 2,5‐bis(isopentyloxy)benzene were synthesized by Suzuki coupling reaction of corresponding comonomers. Their optical, electrochemical, and photovoltaic (PV) properties were studied and are reported. Both the copolymers exhibited long‐wavelength absorption covering the whole visible spectral region, which is in CEHTP thin films extended up to near infrared region, ambipolar redox properties, and electrochromism. High‐electron affinities and low‐optical bandgap values, 1.37 and 1.15 eV, were determined for CEHTF and CEHTP, respectively. PV devices with bulk heterojunction made of blends of copolymers and fullerene derivative [6,6]‐phenyl‐C61‐butyric acid methyl ester ([60]PCBM) were prepared and characterized. Effects of intramolecular charge transfer strength and side‐chain nature and length on photophysical properties are discussed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
Bis(2,5‐di­methoxy‐4‐methyl­phenyl)­methane, C19H24O4, (IIa), was obtained and characterized as a minor product from the reaction of tolu­hydro­quinone di­methyl ether (1,4‐dimethoxy‐2‐methylbenzene) with N‐(hydroxy­methyl)­tri­fluoro­acet­amide. Similarly, bis(2,5‐di­methoxy‐3,4,6‐tri­methyl­phenyl)­methane, C23H32O4, (IIb), was prepared from the corresponding reaction of tri­methyl­hydro­quinone di­methyl ether (2,5‐dimethoxy‐1,3,4‐trimethylbenzene). The mol­ecules of (IIa) and (IIb) each lie on a twofold axis passing through the methyl­ene group. The dihedral angle between the planar phenyl rings is 73.4 (1)° in (IIa) and 77.9 (1)° in (IIb). The external bond angles around the bridging methyl­ene group are 116.6 (2) and 117.3 (2)° for (IIa) and (IIb), respectively. In (IIa), the methoxy substituents lie in the plane of the ring and are conjugated with the aromatic system, whereas in (IIb), they are almost perpendicular to the phenyl ring and are positioned on opposite sides.  相似文献   

19.
Poly[2‐(2′‐ethylhexyloxy)‐5‐methoxy‐1,4‐phenylene‐(1‐cyanovinylene)] MEH‐CN‐PPV and its all‐trans model compound 1,4‐bis(α‐cyanostyryl)‐2‐(2‐ethylhexyloxy)‐5‐methyloxybenzene were synthesized via Knoevenagel condensation. All‐cis isomer and cistrans isomer of 1,4‐bis(α‐cyanostyryl)‐2‐(2‐ethylhexyloxy)‐5‐methyloxybenzene were prepared by the photoisomerization reaction. Comparison of the 1H NMR spectra between MEH‐CN‐PPV and three model compounds proved the occurrence of cis‐vinylene in the backbone of MEH‐CN‐PPV. According to the ratio between the cis‐vinylene signal and trans‐vinylene signal, the content of the cis‐vinylene could be estimated to be 15% in MEH‐CN‐PPV. This large cis‐vinylene content came from the rapid photochemical isomerization of cyanovinylene and was likely relative to the poor electroluminescence property of MEH‐CN‐PPV. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1105–1113, 2008  相似文献   

20.
Poly{bis(4,4′‐tert‐butyl‐2,2′‐bipyridine)–(2,2′‐bipyridine‐5,5′‐diyl‐[1,4‐phenylene])–ruthenium(II)bishexafluorophosphate} ( 3a ), poly{bis(4,4′‐tert‐butyl‐2,2′‐bipyridine)–(2,2′‐bipyridine‐4,4′‐diyl‐[1,4‐phenylene])–ruthenium(II)bishexafluorophosphate} ( 3b ), and poly{bis(2,2′‐bipyridine)–(2,2′‐bipyridine‐5,5′‐diyl‐[1,4‐phenylene])–ruthenium(II)bishexafluorophosphate} ( 3c ) were synthesized by the Suzuki coupling reaction. The alternating structure of the copolymers was confirmed by 1H and 13C NMR and elemental analysis. The polymers showed, by ultraviolet–visible, the π–π* absorption of the polymer backbone (320–380 nm) and at a lower energy attributed to the d–π* metal‐to‐ligand charge‐transfer absorption (450 nm for linear 3a and 480 nm for angular 3b ). The polymers were characterized by a monomodal molecular weight distribution. The degree of polymerization was approximately 8 for polymer 3b and 28 for polymer 3d . © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2911–2919, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号