首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Superatomic clusters offer useful templates displaying distinctive physical and chemical characteristics. Here, we explore the [M@Au8(PPh3)8]n+ (M = Au, n = 3; Pd, Pt, n = 2) robust framework to gain an understanding of the nature of the inclusion of mercury atoms at Au4 faces, leading to [M@Au8Hgx(PPh3)8]n+ (x = 1, 2). Our results show a weak interaction of about 25 kcal mol−1 per Hg atom, which is mainly of electrostatic character, followed by orbital and London dispersion-type interactions. This weak interaction can be understood as the formation of host-guest species, for which the inherent electronic and optical properties of the [M@Au8(PPh3)8] cluster along the series do not vary to a large extent. This demonstrates that, in [M@Au8Hgx(PPh3)8], each Hg can be considered an inclusion atom rather than a dopant element, where the parent cluster is able to act as a Lewis acid host. Furthermore, the viable formation of such species can serve as useful examples to stimulate future experimental characterization of inclusion complexes involving related superatomic structures with available open faces.  相似文献   

2.
We study the adsorption of a variety of small molecules on helical gold nanorods using relativistic density functional theory. We focus on Au40 which consists of a central linear strand of five gold atoms with seven helical strands of five gold atoms on a coaxial tube. All molecules preferentially adsorb at a single low‐coordinated gold atom on the coaxial tube at an end of Au40. In most cases, there is significant charge transfer (CT) between Au40 and the adsorbate, for CO and NO2, there is CT from the Au40 to adsorbate while for all other molecules there is CT from the adsorbate to Au40. Thus, Au40‐adsorbate can be described as a donor–accepter complex and we use charge decomposition analysis to better understand the adsorption process. We determine the adsorption energy order to be C5H5N >NO2 > CO > NH3 > CH2?CH2 > CH2?CH? CHO > NO > HC?CH > H2S > SO2 > HCN > CH3OH > H2C?O > O2 > H2O > CH4 > N2. We find that the Au? C, Au? N, Au? S, and Au? O bonds are surprisingly strong, with clear implications for reactivity enhancement of the adsorbate. The Au? H bond is relatively weak but, for interactions via an H atom that is bonded to a carbon atom (e.g., CH4), we find that there is large charge polarization of the Au? H? C moiety and partial activation of the inert C? H bond. Although the Au? S and Au? O bonds are generally weaker than the Au? C and Au? N bonds, we find that adsorption of H2S or H2O causes greater distortion of Au40 in the binding region. However, the degree of distortion is small and the helical structure is retained, demonstrating the stability of the helical Au40 nanorod under perturbations. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
The geometries, stabilities, electronic, and magnetic properties of AunSc clusters have been systematically investigated by density functional theory. The lowest energy structures of AunSc favor planar structure and the doped Sc atom does not disturb the frame of Aunclusters with n≤11. For n≥12, Sc atom is fully encapsulated by the Au cages. From theanalysis of the second-order energy difference, the fragmentation energies, vertical ionizationpotential, vertical electron affinity, and HOMO-LUMO gap, the clusters with odd Au atoms possess relatively higher stabilities than their neighbor size. The doping of Sc atom can greatly improve the stability and change the sequence of chemical activity for Aun. For n≤11, the total magnetic moments of AunSc appear the alternation between 0.00 and 1.00 μB. The total magnetic moments are quenched when Sc is trapped into the Au cages with n≥12.  相似文献   

4.
We examine the stability and properties of three Au21 cage structures, one with D3 symmetry and denoted as Au21 (D3), which is novel, and the other two with C2v symmetry. One, denoted as Au21 (C2v-1), has been previously reported but the other, denoted as Au21 (C2v-2), is novel. As reference Au21 structures, we also examine a sheet isomer and a compact isomer, Au21 (Cs-Tetra), formed by adsorbing an Au atom on Au20 (Td). For all structures, we consider charge ranging from −1 to +4. For the Au21 cage structures, a primary property of interest is their spherical aromaticity, as measured by their nucleus independent chemical shift. Our focus is on charge +3 since each gold atom is assumed to contribute one (6s) valence electron, and 18 is a magic number for shell closing. We find that, although Au21 (D3)+3 has the largest aromaticity, it is not the most stable cage species. Surprisingly, Au21 (C2v-2), which is not even stable as a neutral cage species, is the most stable tri-cation cage species. We also examine the stability of (neutral) Au21Xn cage structures relative to Au21Xn structures derived from Au21 (Cs-Tetra) (with X = F, Cl, Br, I and n = 1, 3, 5). We find that, although Au21F3 derived from Au21 (D3) has the largest aromaticity, it is not the most stable Au21F3 cage structure. Nonetheless, all cage structures are stabilized relative to Au21 (Cs-Tetra) and, remarkably, for the trichlorinated, tribrominated, and triiodineated clusters, at least one cage structure is more stable than its Au21 (Cs-Tetra) counterpart.  相似文献   

5.
A set of all-electron scalar relativistic calculations on Au n Cu (n = 1–12) clusters has been performed using density functional theory with the generalized gradient approximation at PW91 level. The lowest energy geometries of Au n Cu clusters may be considered as assemblies of triangular Au3 moieties substituted with one Cu atom at the highest coordinated site. All these lowest energy geometries of the Au n Cu clusters are slightly distorted but retain the planar structures of the Au n+1 clusters due to the strong scalar relativistic effects. The Au–Cu bonds are stronger, and a few Au–Au bonds far from the Cu atom are weaker, than the corresponding Au–Au bonds in pure Au n+1 clusters. After doping with a Cu atom, the thermodynamic stability and chemical reactivity are enhanced to some extent. The odd-numbered Au n Cu clusters with even numbers of valence electrons are more stable than the neighboring even-numbered Au n Cu clusters with odd numbers of valence electrons. Odd–even alternations of magnetic moments and electronic configurations for the Au n Cu clusters can be observed clearly and may be understood in terms of the electron pairing effect.  相似文献   

6.
Evolution of three-dimensional configurations, electronic properties, and energies of attachment of donor and acceptor ligands to Au12M (M = Hf, Ta, W, Re, and Os) intermetallic clusters were studied by quantum-chemical methods. The attachment of F to clusters Au12Re and Au12Os and the attachment of H to clusters Au12Ta and Au12Hf are found to give rise to more symmetric structures. The energies of attachment of F to >18-electron Au12M clusters and the energies of attachment of H to <18-electron clusters exceed the energies of attachment of the same atoms to 18-electron cluster Au12W and to cluster Au12.  相似文献   

7.
Solid gold(I) fluoride remains as an unsynthesized and uncharacterized compound. We have performed a search for potential gold(I) fluoride crystal structures using USPEX evolutionary algorithm and dispersion-corrected hybrid density functional methods. Over 4000 AuF crystal structures have been investigated. Behavior of the AuF crystal structures under pressure was studied up to 25 GPa, and we also evaluated the thermodynamic stability of the hypothetical AuF crystal structures with respect to AuF3, AuF5, and Au3F8. Mixed-valence compound Au3[AuF4] with Au atoms in various formal oxidation states emerged as the thermodynamically most stable AuF species.  相似文献   

8.
Excimers and exciplexes are defined as assemblies of atoms or molecules A / A ′ where interatomic/intermolecular bonding appears only in excited states such as [ A 2]* (for excimers) and [ AA ′]* (for exciplexes). Their formation has become widely known because of their role in gas‐phase laser technologies, but their significance in general chemistry terms has been given little attention. Recent investigations in gold chemistry have opened up a new field of excimer and exciplex chemistry that relies largely on the preorganization of gold(I) compounds (electronic configuration AuI(5d10)) through aurophilic contacts. In the corresponding excimers, a new type of Au???Au bonding arises, with bond energies and lengths approaching those of ground‐state Au?Au bonds between metal atoms in the Au0(5d106s1) and AuII(5d9) configurations. Excimer formation gives rise to a broad range of photophysical effects, for which some of the relaxation dynamics have recently been clarified. Excimers have also been shown to play an important role in photoredox binuclear gold catalysis.  相似文献   

9.
Employing first-principles methods, based on density functional theory, we report the ground state geometric and electronic structures of gold clusters doped with platinum group atoms, Au(N)M (N = 1-7, M = Ni, Pd, Pt). The stability and electronic properties of Ni-doped gold clusters are similar to that of pure gold clusters with an enhancement of bond strength. Due to the strong d-d or s-d interplay between impurities and gold atoms originating in the relativistic effects and unique properties of dopant delocalized s-electrons in Pd- and Pt-doped gold clusters, the dopant atoms markedly change the geometric and electronic properties of gold clusters, and stronger bond energies are found in Pt-doped clusters. The Mulliken populations analysis of impurities and detailed decompositions of bond energies as well as a variety of density of states of the most stable dopant gold clusters are given to understand the different effects of individual dopant atom on bonding and electronic properties of dopant gold clusters. From the electronic properties of dopant gold clusters, the different chemical reactivity toward O(2), CO, or NO molecule is predicted in transition metal-doped gold clusters compared to pure gold clusters.  相似文献   

10.
Two new compounds, β‐ScTe (scandium telluride) and Y3Au2 (triyttrium digold), have been synthesized by high‐temperature solid‐state techniques and their crystal structures, along with that of Y2Au (diyttrium gold), have been refined by single‐crystal X‐ray diffraction methods. β‐ScTe is a superstructure of ScTe (NiAs‐type), featuring double hexagonal close‐packed layers of Te atoms with the octahedral cavities filled by Sc atoms. Y3Au2 displays a U3Si2‐type structure and is built from Au2‐centered bitrigonal prisms and centered cubes of Y atoms. The structure of Y2Au is better described as an inverse PbCl2‐type structure rather than a Co2Si‐type.  相似文献   

11.
The reduction of (Ph3P)AuCl with NaBH4 in the presence of HSC(SiMe3)3, leads to one of the largest metalloid gold clusters: Au108S24(PPh3)16 ( 1 ). Within 1 an octahedral Au44 core of gold atoms arranged as in Au metal is surrounded by 48 oxidized Au atoms of an Au48S24 shell, a novel building block in gold chemistry. The protecting Au48S24 shell is completed by additional 16 Au(PPh3) units, leading to a complete protection of the gold core. Within 1 the Au–Au distances get more molecular on going from the center to the ligand shell. Cluster 1 represents novel structural motives in the field of metalloid gold clusters which also are partly typical for metal atoms in metalloid clusters: Mn Rm (n >m ).  相似文献   

12.
This Concept article provides an elementary discussion of a special class of large‐sized gold compounds, so‐called Au nanoclusters, which lies in between traditional organogold compounds (e.g., few‐atom complexes, <1 nm) and face‐centered cubic (fcc) crystalline Au nanoparticles (typically >2 nm). The discussion is focused on the relationship between them, including the evolution from the Au???Au aurophilic interaction in AuI complexes to the direct Au? Au bond in clusters, and the structural transformation from the fcc structure in nanocrystals to non‐fcc structures in nanoclusters. Thiolate‐protected Aun(SR)m nanoclusters are used as a paradigm system. Research on such nanoclusters has achieved considerable advances in recent years and is expected to flourish in the near future, which will bring about exciting progress in both fundamental scientific research and technological applications of nanoclusters of gold and other metals.  相似文献   

13.
The study of chemical reactions between gold‐containing heteronuclear oxide clusters and small molecules can provide molecular level mechanisms to understand the excellent activity of gold supported by metal oxides. While the promotion role of gold in alkane transformation was identified in the clusters with atomic oxygen radicals (O?.), the role of gold in the systems without O?. is not clear. By employing mass spectrometry and quantum chemistry calculations, the reactivity of Au2VO3+ clusters with closed‐shell electronic structures toward ethane was explored. Both the dehydrogenation and ethene elimination channels were identified. It is gold rather than oxygen species initiating the C?H activation. The Au?Au dimer formed during the reactions plays important roles in ethane transformation. The reactivity comparison between Au2VO3+ and bare Au2+ demonstrates that Au2VO3+ not only retains the property of bare Au2+ that transforming ethane to dihydrogen, but also exhibits new functions in converting ethane to ethene, which reveals the importance of the composite system. This study provides a further understanding of the reactivity of metal oxide supported gold in alkane activation and transformation.  相似文献   

14.
With reference to the high‐symmetric structure and significant stability of M@Au12 cage molecules (M = group 6 transition element), the geometric and electronic structures as well as bonding of various Sg@Au12 isomers are investigated by DFT (PW91, PBE, B3LYP) and wave function theory (MP2, CCSD(T)) approaches.  相似文献   

15.
New auride Ca3Au3In was synthesized from the elements in a sealed tantalum tube in a high‐frequency furnace. Ca3Au3In was investigated by X‐ray powder and single crystal diffraction: ordered Ni4B3 type, Pnma, a = 1664.1(6), b = 457.3(2), c = 895.0(3) pm, wR2 = 0.0488, 1361 F2 values, and 44 variables. The three crystallographically independent boron positions of the Ni4B3 type are occupied by the gold atoms, while the four nickel sites are occupied by calcium and indium in an ordered manner. All gold atoms have trigonal prismatic coordination, i.e. Ca6 prisms for Au1 and Au2 and Ca4In2 prisms for Au3. While the Au3 atoms are isolated, we observe Au1–Au1 and Au2–Au2 zig‐zag chains at Au–Au distances of 292 and 284 pm. These slabs resemble the CrB type structure of CaAu. Consequently Ca3Au3In can be considered as a ternary auride. Together the Au2, Au3 and indium atoms build up a three‐dimensional [Au2In] polyanionic network (281–293 pm Au–In) in which the chains of Au1 centered trigonal prisms are embedded. The crystal chemical similarities with the structures of Ni4B3, CaAuIn, and CaAu are discussed.  相似文献   

16.
A systematic density functional theory investigation on C2Au n + (n = 1,3,5) and C2Au n (n = 2,4,6) indicates that gold atoms serve as terminals (–Au) in the chain-like Cs C2Au+ (C=C–Au+) and D∞h C2Au2 (Au–C≡C–Au) and as bridges (–Au–) in the side-on coordinated C2v C2Au3 + ([Au–C≡C–Au]Au+) and Cs C2HAu2 +([H–C≡C–Au]Au+). However, when the number of gold atoms reaches four, they form stable gold triangles (–Au3) in the head-on coordinated C2v C2Au4 (Au–C≡C–Au3) and the side-on coordinated C2v C2Au5 + ([Au–C≡C–Au]Au3 +). Similar –Au3 triangular units exist in the head-on coordinated C2v C2HAu3 (H–C≡C–Au3) and D2d C2Au6 (Au3–C≡C–Au3). The existence of stable –Au3 triangular units in small dicarbon aurides is significant and intriguing. The high stability of Au3 triangles originates from the fact that an equilateral D3h Au3 + cation possesses a completely delocalized three-center-two-electron (3c–2e) σ bond and therefore is σ-aromatic in nature. The extension from H/Au analogy to H/Au3 analogy established in this work may have important implications in designing new gold-containing catalysts and nano-materials.  相似文献   

17.
Au/H 相似性的研究是现代化学中的一个热门话题. 我们从理论上报道Au/H 相似的新成员: 共价化合物B2Au4, 离子化合物Al2Au4和BAlAu4. 采用密度泛函和波函数理论方法对比研究了缺电子体系B2Au4、Al2Au4和BAlAu4的几何和电子结构. 详细讨论了它们基态结构的轨道、适应性自然密度划分(AdNDP)和电子局域函数(ELF)分析. 计算结果表明稍微扭曲变形的C2B2Au4是基态结构, 在这个共价化合物中含有两个B―Au―B三中心二电子(3c-2e)键. 然而C3v Al+(AlAu4)-和C3v Al+(BAu4)-被研究证明是含有三个X―Au―Al 三中心二电子键的类盐化合物(在Al2Au4中X=Al, BAlAu4中X=B). Al2Au4和BAlAu4是至今为止首例报道的在离子缺电子体系中含有金桥键的化合物. 同时计算了B2Au4-、Al2Au4- 和BAlAu4- 阴离子基态结构的绝热剥离能和垂直剥离能, 为实验表征提供依据. 文中报道的金桥键为共价键和离子键相结合的缺电子体系提供了一个有趣的键合模式, 有助于设计含有高度分散金原子的新材料和催化剂.  相似文献   

18.
A modified adaptive immune optimization algorithm (AIOA) is designed for optimization of Cu–Au and Ag–Au bimetallic clusters with Gupta potential. Compared with homoatom clusters, there are homotopic isomers in bimetallic cluster, so atom exchange operation is presented in the modified AIOA. The efficiency of the algorithm is tested by optimization of CunAu38‐n (0 ≤ n ≤ 38). Results show that all the structures with the putative global minimal energies are successfully located. In the optimization of AgnAu55‐n (0 ≤ n ≤ 55) bimetallic clusters, all the structures with the reported minimal energies are obtained, and 36 structures with even lower potential energies are found. On the other hand, with the optimized structures of CunAu55‐n, it is shown that all 55‐atom Cu–Au bimetallic clusters are Mackay icosahedra except for Au55, which is a face‐centered cubic (fcc)‐like structure; Cu55, Cu12Au43, and Cu1Au54 have two‐shell Mackay icosahedral geometries with Ih point group symmetry. © 2009 Wiley Periodicals, Inc. J Comput Chem 2009  相似文献   

19.
A DFT study was carried out on the ground state structures of ternary CulAgmAun (l + m + n = 6) clusters, with the aim of investigating changes of thermal and kinetic stabilities as an effect of composition, as well as the composition dependence of the electrostatic potential, of stable planar structures. DFT optimizations were performed using the PBE functional and the SDD basis set. All the optimized structures adopt planar geometries with bent triangular structures. Calculated binding energy values are in the range 1.5–1.9 eV/atom, which shows their thermal stability. The predicted HOMO‐LUMO energy gap values are in the semiconductor region, providing a qualitative indication of a moderate kinetic stability. NBO analyses indicate the existence of two mechanisms promoting planar structural stability, one due to bonding‐antibonding orbital interaction, and the other one due to the well‐known spd hybridization. Wiberg indices were obtained showing interatomic bonding. Electrostatic potential calculations show the existence of nucleophilic attack regions preferentially around silver and copper atoms located at the vertices while electrophilic attack regions are found in the vicinity of gold atoms over the cluster plane. Apparently, charge transfer occurs toward gold from silver and copper atoms when the concentration is favorable in the proximity of gold atoms. In particular, if the small ternary clusters discussed here contain only one gold atom, then a high electron density is observed at the site of this gold atom. © 2016 Wiley Periodicals, Inc.  相似文献   

20.
On-surface metal-organic coordination provides a promising way for synthesizing different two-dimensional lattice structures that have been predicted to possess exotic electronic properties. Using scanning tunneling microscopy (STM) and spectroscopy (STS), we studied the supramolecular self-assembly of 9,10-dicyanoanthracene (DCA) molecules on the Au(111) surface. Close-packed islands of DCA molecules and Au-DCA metal-organic coordination structures coexist on the Au(111) surface. Ordered DCA3Au2 metal-organic networks have a structure combining a honeycomb lattice of Au atoms with a kagome lattice of DCA molecules. Low-temperature STS experiments demonstrate the presence of a delocalized electronic state containing contributions from both the gold atom states and the lowest unoccupied molecular orbital of the DCA molecules. These findings are important for the future search of topological phases in metal-organic networks combining honeycomb and kagome lattices with strong spin-orbit coupling in heavy metal atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号