首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, the position and momentum space information densities of the Eckart potential are graphically demonstrated and their properties are studied. The position space information densities have quite an asymmetric shape depending on the values of quantum numbers. The information entropy is obtained and Bialynicki‐Birula and Mycielski inequality is numerically saturated for some parameters of the potential. It is shown that the inequality is saturated with increasing potential depth.  相似文献   

2.
We solve the D‐dimensional Schrödinger equation under the Hua potential by using a Pekeris‐type approximation and the supersymmetry quantum mechanics. The reliability of the spectrum is checked via a comparison with the finite difference method. This interaction resembles Eckart, Morse, and Manning–Rosen potentials. Some useful quantities are reported via the Hellmann–Feynman Theorem. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
In this work, we construct approximate coherent states for a Morse‐like potential using the displacement operator method and a method recently proposed by Gazeau and Klauder. To test if these states are minimum uncertainty states, we evaluate the temporal evolution of the dispersions in position and momentum. We also construct the trajectories in the phase space and compare with the classic solution. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

4.
The information‐theoretic measure of confined hydrogen atom has been investigated extensively in the literature. However, most of them were focused on the ground state and accurate values of information entropies, such as Shannon entropy, for confined hydrogen are still not determined. In this work, we establish the benchmark results of the Shannon entropy for confined hydrogen atom in a spherical impenetrable sphere, in both position and momentum spaces. This is done by examining the bound state energies, the normalization of wave functions, and the scaling property with respect to isoelectronic hydrogenic ions. The angular and radial parts of Shannon entropy in two conjugate spaces are provided in detail for both free and confined hydrogen atom in ground and several excited states. The entropies in position space decrease logarithmically with decreasing the size of confinement, while those in momentum space increase logarithmically. The Shannon entropy sum, however, approaches to finite values when the confinement radius closes to zero. It is also found that the Shannon entropy sum shares same trend for states with similar density distributions. Variations of entropy for nodeless bound states are significantly distinct form those owning nodes when changing the confinement radius.  相似文献   

5.
The Shannon entropy (S) and the Fisher Information (I) entropies are investigated for a generalized hyperbolic potential in position and momentum spaces. First, the Schrodinger equation is solved exactly using the Nikiforov-Uvarov-Functional Analysis method to obtain the energy spectra and the corresponding wave function. By Fourier transforming the position space wave function, the corresponding momentum wave function was obtained for the low-lying states corresponding to the ground and first excited states. The positions and momentum of Shannon entropy and Fisher Information entropies were calculated numerically. Finally, the Bialynicki-Birula and Mycielski and the Stam-Cramer-Rao inequalities for the Shannon entropy and Fisher Information entropies, respectively, were tested and were found to be satisfied for all cases considered.  相似文献   

6.
In this paper, Shannon entropy and Fisher information is studied for the screened Kratzer potential model and compared with the screened Coulomb in three dimensions. Our results showed similar higher-order characteristic behavior for position and momentum space. Our numerical results showed that increases in the accuracy of predicting particle location occurred in the position space. Our result shows that the sum of the position and momentum entropies satisfies the lower-bound Berkner, Bialynicki-Birula, and Mycieslki inequality. The Stam-Cramer-Rao inequalities relation for Fisher information and the expectation values were also satisfied for the different eigenstates.  相似文献   

7.
By applying the dissociation energy and the equilibrium bond length for a diatomic molecule as explicit parameters, we generate an improved expression for the deformed Rosen–Morse potential energy model. It is found that the deformed Rosen–Morse potential model and the well-known Tietz potential model are the same empirical potential function for diatomic molecules. With the help of the energy spectrum expression of the deformed Rosen–Morse potential model, we obtain exact closed-form expressions of diatomic anharmonicity constants $\omega _e x_e $ ω e x e and $\omega _e y_e $ ω e y e .  相似文献   

8.
9.
In this study, the information‐theoretic measures in both the position and momentum spaces for the pseudoharmonic potential using Fisher information, Shannon entropy, Renyi entropy, Tsallis entropy, and Onicescu information energy are investigated analytically and numerically. The results obtained are applied to some diatomic molecules. The Renyi and Tsallis entropies are analytically obtained in position space using Srivastava–Niukkanen linearization formula in terms of the Lauricella hypergeometric function. Also, they are obtained in the momentum space in terms of the multivariate Bell polynomials of Combinatorics. We observed that the Fisher information increases with n in both the position and momentum spaces, but decreases with for all the diatomic molecules considered. The Shannon entropy also increases with increasing n in the position space and decreases with increasing . The variations of the Renyi and Tsallis entropies with are also discussed. The exact and numerical values of the Onicescu information energy are also obtained, after which the ratio of information‐theoretic impetuses to lengths for Fisher, Shannon, and Renyi are obtained. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
Shannon entropies of the pair density, conditional entropies, and mutual information are studied in position and in momentum space for ground state neutral atoms and selected excited states at the Hartree‐Fock level. We show that the mutual information, a measure of correlation, is larger in position space than in momentum space. This result also holds for a mutual information defined in terms of the exchange density; however, these quantities display much more structure than the corresponding ones based on the pair densities. The interpretation of this behavior is that exchange effects are smaller in momentum space than in position space in these systems. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

11.
The current density concepts of the position and momentum probability distributions are examined and the associated continuity equations are explored. The modified flow measure in the momentum-space is introduced in terms of which the nonclassical (current-related) functionals of the entropy/information content in quantum states assume forms isomorphic with the corresponding position-space expressions, when expressed in terms of the state modulus (density) and phase (current) degrees-of-freedom. These concepts are illustrated for the stationary states as well as the plane waves and wave packets of the free particle.  相似文献   

12.
Exact closed forms of the equilibrium partition functions in terms Jacobi elliptic functions are derived for a particle in a box and Rosen–Morse (Poschl–Teller) oscillator (perfect for modeling bending vibrational modes). An exact form of the equilibrium partition function of Morse oscillator is reported. Three other approximate forms of Morse partition function are presented. Having an exact closed‐form for the vibrational partition function can be very helpful in evaluating thermodynamic state functions, e.g., entropy, internal energy, enthalpy, and heat capacity. Moreover, the herein presented closed forms of the vibrational partition function can be used for obtaining spectroscopic and dynamical information through evaluating the two‐ and four‐point dipole moment time correlation functions in anharmonic media. Finally, a closed exact form of the rotational partition function of a particle on a ring in terms of the first kind of complete elliptic integral is derived. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

13.
Although the Morse potential function is widely used in molecular modeling software, newer potential functions that possess more parameters provide greater accuracy. Against this backdrop, the Four-Parameter-Diatomic-Potential (FPDP) was selected for converting its parameter into those of the Morse potential due to the former’s resemblance to the latter. A pair of modified Morse indices was extracted by imposing equal force constant for infinitesimal bond stretching and equal energy integral for complete interatomic separation. Results reveal very good agreement for both bond compression and bond stretching. The developed parameter conversion would enable all FPDP parameters to be converted into the modified Morse parameters. Only minor algorithm alterations are required for incorporating the modified Morse function into molecular modeling packages that adopt the conventional Morse potential for describing 2-body bonded interaction.  相似文献   

14.
15.
We present modified ?-states of diatomic molecules by solving the radial and angle-dependent parts of the Schrödinger equation for central potentials, such as Morse and Kratzer, plus an exactly solvable angle-dependent potential V θ (θ)/r 2 within the framework of the Nikiforov–Uvarov (NU) method. We emphasize that the contribution which comes from the solution of the Schrödinger equation for the angle-dependent potential modifies the usual angular momentum quantum number ?. We calculate explicitly bound state energies of a number of neutral diatomic molecules composed of a first-row transition metal and main-group elements for both Morse and Kratzer potentials plus an angle-dependent potential. We also compare the bound state energies for both potentials, taking into account spectroscopic parameters of diatomic molecules and arbitrary values of potential constants.  相似文献   

16.
The smart-darting algorithm is a Monte Carlo based simulation method used to overcome quasiergodicity problems associated with disconnected regions of configurations space separated by high energy barriers. As originally implemented, the smart-darting method works well for clusters at low temperatures with the angular momentum restricted to zero and where there are no transitions to permutational isomers. If the rotational motion of the clusters is unrestricted or if permutational isomerization becomes important, the acceptance probability of darting moves in the original implementation of the method becomes vanishingly small. In this work the smart-darting algorithm is combined with the parallel tempering method in a manner where both rotational motion and permutational isomerization events are important. To enable the combination of parallel tempering with smart darting so that the smart-darting moves have a reasonable acceptance probability, the original algorithm is modified by using a restricted space for the smart-darting moves. The restricted space uses a body-fixed coordinate system first introduced by Eckart, and moves in this Eckart space are coupled with local moves in the full 3N-dimensional space. The modified smart-darting method is applied to the calculation of the heat capacity of a seven-atom Lennard-Jones cluster. The smart-darting moves yield significant improvement in the statistical fluctuations of the calculated heat capacity in the region of temperatures where the system isomerizes. When the modified smart-darting algorithm is combined with parallel tempering, the statistical fluctuations of the heat capacity of a seven-atom Lennard-Jones cluster using the combined method are smaller than parallel tempering when used alone.  相似文献   

17.
A single-particle model of molecular vibrational states is proposed in which the normal modes are projected out of the body vibrations of an infinite simple harmonic sphere. This model assigns the spurious change of mass or centre of mass and leads to removal of mass monopoles and dipoles from the system. These conservation conditions impose strict boundary conditions on the potential and basis functions. On incorporation into the model they result in a set of loop equations in which the potential is proportional to the fundamental vibration. The simplest solutions to these equations strongly resemble the Poschl-Teller generalization of the Morse potential. The solutions have been extended to incorporate the repulsive states and generate the set of net attractive states appropriate to the anharmonic potential.The basis functions of this potential display both angular and radial node structures. The degeneracies between radial and angular mode patterns can be studied by transformation into an angular coordinate space. In this way coupling to other phenomena described in similar angular momentum space can be performed directly before subduction to real displacement space.On leave from the Department of Chemistry, Catholic University of Leuven, Celestijnenlaan 200F, B-3030 Leuven-Belgium  相似文献   

18.
Intracules in position space, momentum space and phase space have been calculated for low-lying excited states of the He atom, Be atom, formaldehyde and butadiene. The phase-space intracules (Wigner intracules) provide significantly more information than the position- and momentum-space intracules, particularly for the Be atom. Exchange effects are investigated through the differences between corresponding singlet and triplet states.  相似文献   

19.
A new approach for propagating time-dependent quantum wave packets is presented based on the direct numerical solution of the quantum hydrodynamic equations of motion associated with the de Broglie–Bohm formulation of quantum mechanics. A generalized iterative finite difference method (IFDM) is used to solve the resulting set of non-linear coupled equations. The IFDM is 2nd-order accurate in both space and time and exhibits exponential convergence with respect to the iteration count. The stability and computational efficiency of the IFDM is significantly improved by using a “smart” Eulerian grid which has the same computational advantages as a Lagrangian or Arbitrary Lagrangian Eulerian (ALE) grid. The IFDM is generalized to treat higher-dimensional problems and anharmonic potentials. The method is applied to a one-dimensional Gaussian wave packet scattering from an Eckart barrier, a one-dimensional Morse oscillator, and a two-dimensional (2D) model collinear reaction using an anharmonic potential energy surface. The 2D scattering results represent the first successful application of an accurate direct numerical solution of the quantum hydrodynamic equations to an anharmonic potential energy surface.  相似文献   

20.
The Shannon information entropy of 1-normalized electron density in position and momentum space Sr and Sp, and the sum ST, respectively, are reported for the ground-state H, He+, Li2+, H-, He, Li+, Li, and B atoms confined inside an impenetrable spherical boundary defined by radius R. We find new characteristic features in ST denoted by well-defined minimum and maximum as a function of confinement. The results are analyzed in the background of the irreducible lower bound stipulated by the entropy uncertainty principle [I. Bialynicki-Birula and J. Mycielski, Commun. Math. Phys. 44, 129 (1975)]. The spherical confinement model leads to the ST values which satisfy the lower bound up to the limits of extreme confinements with the interesting new result displaying regions over which a set of upper and lower bounds to the information entropy sum can be locally prescribed. Similar calculations on the H atom in 2s excited states are presented and their novel characteristics are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号