首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
3.
4.
Despite the great advances in microsurgery, some neural injuries cannot be treated surgically. Stem cell therapy is a potential approach for treating neuroinjuries and neurodegenerative disease. Researchers have developed various bioactive scaffolds for tissue engineering, exhibiting enhanced cell viability, attachment, migration, neurite elongation, and neuronal differentiation, with the aim of developing functional tissue grafts that can be incorporated in vivo. Facilitating the appropriate interactions between the cells and extracellular matrix is crucial in scaffold design. Modification of scaffolds with biofunctional motifs such as growth factors, drugs, or peptides can improve this interaction. In this review, we focus on the laminin‐derived Ile‐Lys‐Val‐Ala‐Val peptide as a biofunctional epitope for neuronal tissue engineering. Inclusion of this bioactive peptide within a scaffold is known to enhance cell adhesion as well as neuronal differentiation in both 2‐dimensional and 3‐dimensional environments. The in vivo application of this peptide is also briefly described.  相似文献   

5.
Methods and devices that use gas flows to collect ions and transfer them over long distances for mass spectrometric analysis have been developed. Gas flows derived from the ionization source itself or provided by means of additional pumping were used to generate a laminar flow inside cylindrical tube. Hydrodynamic simulations and experimental tests demonstrate that laminar flow can transfer ions over long distance. The typical angular discrimination effects encountered when sampling ions from ambient ionization sources are minimized, and the sampling of relatively large surface areas is demonstrated with desorption electrospray ionization (DESI). Ion transfer over 6 m has been achieved and its application to multiplexed chemical analysis is demonstrated on samples at locations remote from the mass spectrometer. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Glycosylation is one of the most common posttranslational modifications (PTMs) of proteins, the characterization of which is commonly achieved through proteomic protocol, involving trypsin digestion followed by liquid chromatography/tandem mass spectrometry (LC/MS/MS). However, it is often not possible to characterize all glycopeptides in a complex sample because of the high complexity of glycoproteomic samples, and the relative lower abundances of glycopeptides in comparison to the unmodified peptides. We present here a targeted MS/MS analysis approach, which utilizes a previously developed computational tool, GlyPID, to guide multiple experiments, thus permitting a complete characterization of all N‐glycosylation sites of glycoproteins present in a complex sample. We have tested our approach using model glycoproteins analyzed by high‐resolution LTQ‐FT MS. The results demonstrate a potential use of our method for a high‐throughput characterization of complex mixtures of glycosylated proteins. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
This paper focuses on development of time‐of‐flight (TOF) mass spectrometry in response to the invention of matrix‐assisted laser desorption/ionization (MALDI). Before this breakthrough ionization technique for nonvolatile molecules, TOF was generally considered as a useful tool for exotic studies of ion properties but was not widely applied to analytical problems. Improved TOF instruments and software that allow the full potential power of MALDI to be applied to difficult biological applications are described. A theoretical approach to the design and optimization of MALDI‐TOF instruments for particular applications is presented. Experimental data are provided that are in excellent agreement with theoretical predictions of resolving power and mass accuracy. Data on sensitivity and dynamic range using kilohertz laser rates are also summarized. These results indicate that combinations of high‐performance MALDI‐TOF and TOF‐TOF with off‐line high‐capacity separations may ultimately provide throughput and dynamic range several orders of magnitude greater than those currently available with electrospray LC‐MS and MS‐MS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
A novel drug‐screening system, consisting of paper spray‐MS (PS‐MS) and a CE‐ESI‐MS method was developed. This system can be easily switched either to PS‐MS for rapidly screening samples or to the traditional CE‐ESI‐MS method for separation and to obtain detailed mass spectral information, while sharing the same mass spectrometer. In the former case, when a sharp (15°‐tip) chromatography paper was used, the optimized distance from the paper tip to the mass inlet was 7.7 mm, whereas the optimized distance for the CE‐ESI tip was ~13.5 mm. Using 4chloroamphetamine as a model compound, the LODs for PS‐MS and CE‐ESI‐MS were determined to ~0.1 and 0.25 ppm, respectively. Comparisons of results obtained using PS‐MS and CE‐ESI‐MS and the experimental conditions are described.  相似文献   

9.
Triple quadrupole mass spectrometers coupled with high performance liquid chromatography are workhorses in quantitative bioanalyses. They provide substantial benefits including reproducibility, sensitivity and selectivity for trace analysis. Selected reaction monitoring allows targeted assay development but datasets generated contain very limited information. Data mining and analysis of nontargeted high‐resolution mass spectrometry profiles of biological samples offer the opportunity to perform more exhaustive assessments, including quantitative and qualitative analysis. The objectives of this study were to test method precision and accuracy, to statistically compare bupivacaine drug concentration in real study samples and to verify if high‐resolution and accurate mass data collected in scan mode can actually permit retrospective data analysis, more specifically, extract metabolite related information. The precision and accuracy data presented using both instruments provided equivalent results. Overall, the accuracy ranged from 106.2 to 113.2% and the precision observed was from 1.0 to 3.7%. Statistical comparisons using a linear regression between both methods revealed a coefficient of determination (R2) of 0.9996 and a slope of 1.02, demonstrating a very strong correlation between the two methods. Individual sample comparison showed differences from ?4.5 to 1.6%, well within the accepted analytical error. Moreover, post‐acquisition extracted ion chromatograms at m/z 233.1648 ± 5 ppm (M ? 56) and m/z 305.2224 ± 5 ppm (M + 16) revealed the presence of desbutyl‐bupivacaine and three distinct hydroxylated bupivacaine metabolites. Post‐acquisition analysis allowed us to produce semi‐quantitative evaluations of the concentration–time profiles for bupicavaine metabolites. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
11.
12.
In pre‐implantation embryos, lipids play key roles in determining viability, cryopreservation and implantation properties, but often their analysis is analytically challenging because of the few picograms of analytes present in each of them. Matrix‐assisted laser desorption/ionization mass spectrometry (MALDI‐MS) allows obtaining individual phospholipid profiles of these microscopic organisms. This technique is sensitive enough to enable analysis of individual intact embryos and monitoring the changes in membrane lipid composition in the early stages of development serving as screening method for studies of biology and biotechnologies of reproduction. This article introduces an improved, more comprehensive MALDI‐MS lipid fingerprinting approach that considerably increases the lipid information obtained from a single embryo. Using bovine embryos as a biological model, we have also tested optimal sample storage and handling conditions before the MALDI‐MS analysis. Improved information at the molecular level is provided by the use of a binary matrix that enables phosphatidylcholines, sphingomyelins, phosphatidylserines, phosphatidylinositols and phosphoethanolamines to be detected via MALDI(±)‐MS in both the positive and negative ion modes. An optimal MALDI‐MS protocol for lipidomic monitoring of a single intact embryo is therefore reported with potential applications in human and animal reproduction, cell development and stem cell research. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
14.
15.
16.
In this paper, the time resolution for kinetic studies of reactions with mass spectrometric detection is characterized in detail, and it is shown how this allows faster kinetic processes to be determined. The time‐resolved technique used pulsed laser photolysis to initiate reaction and a time‐of‐flight mass spectrometer (TOFMS) to monitor progress, where the reactant gas was sampled by a sampling orifice and photoionized using pulsed, laser vacuum ultraviolet light before being analyzed by the TOFMS. Characterization of this setup has been carried out to identify the parameters that affect the time for “sampling,” which limits the fastest reactions that can be measured. A simple mathematical equation has been developed to correct for “sampling” delays (ksampling~25, 000 s?1), which extends the range of rate coefficients to be measured in a kinetic mass spectrometry reactor to k′ < 7000 s?1. This method could be applied to any other kinetic mass spectrometry system where ksampling can be measured; an important advantage since it allows the study of reactions over a wider range of conditions (e.g., larger concentrations of reagents/products can be used to minimize the contribution from wall losses). The system can produce reliable kinetic data whether monitoring reactant decay or product growth even when the reaction and sampling processes are occurring on a similar timescale (k′ < 7000 s?1). Reproducible and reliable kinetic data have been obtained for the following reactions: SO + NO2 → products (R1), ClSO + NO2 → products (R2), where SO and ClSO were monitored under pseudo‐first‐order conditions, and HCO + O2 → CO + HO2 (R3), where CO was monitored by a [1+1] resonance enhanced ionization multiphoton ionization (REMPI) scheme with HCO reacting under pseudo–first‐order conditions. The limitations and potential developments of this setup are described. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 44: 532–545, 2012  相似文献   

17.
Scientific objectives of current and future space missions are focused on the investigation of the origin and evolution of the solar system with the particular emphasis on habitability and signatures of past and present life. For in situ measurements of the chemical composition of solid samples on planetary surfaces, the neutral atmospheric gas and the thermal plasma of planetary atmospheres, the application of mass spectrometers making use of time‐of‐flight mass analysers is a technique widely used. However, such investigations imply measurements with good statistics and, thus, a large amount of data to be analysed. Therefore, faster and especially robust automated data analysis with enhanced accuracy is required. In this contribution, an automatic data analysis software, which allows fast and precise quantitative data analysis of time‐of‐flight mass spectrometric data, is presented and discussed in detail. A crucial part of this software is a robust and fast peak finding algorithm with a consecutive numerical integration method allowing precise data analysis. We tested our analysis software with data from different time‐of‐flight mass spectrometers and different measurement campaigns thereof. The quantitative analysis of isotopes, using automatic data analysis, yields results with an accuracy of isotope ratios up to 100 ppm for a signal‐to‐noise ratio (SNR) of 104. We show that the accuracy of isotope ratios is in fact proportional to SNR−1. Furthermore, we observe that the accuracy of isotope ratios is inversely proportional to the mass resolution. Additionally, we show that the accuracy of isotope ratios is depending on the sample width T s by T s0.5. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
Chemical cross‐linking combined with mass spectrometry (MS) has been used to elucidate protein structures and protein‐protein interactions. However, heterogeneity of the samples and the relatively low abundance of cross‐linked peptides make this approach challenging. As an effort to overcome this hurdle, we have synthesized lysine‐reactive homobifunctional cross‐linkers with the biotin in the middle of the linker and used them to enrich cross‐linked peptides. The reaction of biotin‐tagged cross‐linkers with purified HIV‐1 CA resulted in the formation of hanging and intramolecular cross‐links. The peptides modified with biotinylated cross‐linkers were effectively enriched and recovered using a streptavidin‐coated plate and MS‐friendly buffers. The enrichment of modified peptides and removal of the dominantly unmodified peptides simplify mass spectra and their analyses. The combination of the high mass accuracy of Fourier transform ion cyclotron resonance (FT‐ICR) MS and the tandem mass spectrometric (MS/MS) capability of the linear ion trap allows us to unambiguously identify the cross‐linking sites and additional modification, such as oxidation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Procyanidins are polymeric flavan‐3‐ones occurring in many plants with antioxidant and other beneficial bioactivities. They are composed of catechin and epicatechin monomeric units connected by single carbon‐carbon B‐type linkages or A‐type linkages containing both carbon‐carbon and carbon‐oxygen‐carbon bonds. Their polymeric structure makes analysis of procyanidin mixtures always difficult. Evaluation of procyanidins according to degree of polymerization (DP) using high‐performance liquid chromatography (HPLC) is time‐consuming and at best has resolved polymeric families up to DP‐17. To expedite studies of procyanidins, the utility of positive ion electrospray ion mobility‐mass spectrometry (IM‐MS) was investigated for the rapid separation and characterization of procyanidins in mixtures. Applying IM‐MS to analyse structurally defined standards containing up to five subunits, procyanidins could be resolved in less than 6 ms not only by degree of polymerization but also by linkage type. A‐type procyanidins could be resolved from B‐type and both could be at least partially resolved from mixed‐type procyanidins of the same DP. IM‐MS separated higher order procyanidins with DP of at least 24 from extracts of cranberry. As DP increased, the abundances of multiply‐charged procyanidins also increased. During IM‐MS of ions of similar m/z, the ion drift times decreased inversely with increasing charge state. Therefore, IM‐MS was shown to separate mixtures of procyanidins containing at least 24 interconnected subunits in less than 16 ms, not only according to DP, but also according to linkage type between subunits and charge state.  相似文献   

20.
‘Legal highs’ are novel substances which are intended to elicit a psychoactive response. They are sold from ‘head shops’, the internet and from street suppliers and may be possessed without legal restriction. Several months ago, a 19‐year‐old woman came searching for medical treatment as she had health problems caused by smoking legal highs. The substances were sold as herbal blends in plastic bags under four different labels. In this work, samples of these herbal blends have been analysed to investigate the presence of psychoactive substances without any reference standard being available at the laboratory. A screening strategy for a large number of synthetic and natural cannabinoids has been applied based on the use of ultra‐high pressure liquid chromatography coupled to quadrupole‐time of flight mass spectrometry (UHPLC‐QTOF MS) under MSE mode. A customized home‐made database containing literature‐based exact masses for parent and product ions of around 200 synthetic and natural cannabinoids was compiled. The presence of the (de)protonated molecule measured at its accurate mass was evaluated in the samples. When a peak was detected, collision‐induced dissociation fragments and characteristic isotopic ions were also evaluated and used for tentative identification. After this tentative identification, four synthetic cannabinoids (JWH‐081, JWH‐250, JWH‐203 and JWH‐019) were unequivocally confirmed by subsequent acquisition of reference standards. The presence in the herbal blends of these synthetic cannabinoids might explain the psychotic and catatonic symptoms observed in the patient, as JWH compounds could act as potent agonists of CB1 and CB2 receptors located in the Limbic System and Basal ganglia of the human brain. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号