首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regioselective zw-type [3 + 2] cycloaddition (32CA) reactions of a series of aryl-substituted nitrile N-oxides (NOs) with trichloronitropropene (TNP) have been both experimentally and theoretically studied within the Molecular Electron Density Theory (MEDT). Zwitterionic NOs behave as moderate nucleophiles while TNP acts as a very strong electrophile in these polar 32CA reactions of forward electron density flux, which present moderate activation Gibbs free energies of 22.8–25.6 kcal·mol−1 and an exergonic character of 28.4 kcal·mol−1 that makes them irreversible and kinetically controlled. The most favorable reaction is that involving the most nucleophilic MeO-substituted NO. Despite Parr functions correctly predicting the experimental regioselectivity with the most favorable O-CCCl3 interaction, these reactions follow a two-stage one-step mechanism in which formation of the O-C(CCl3) bond takes place once the C-C(NO2) bond is already formed. The present MEDT concludes that the reactivity differences in the series of NOs come from their different nucleophilic activation and polar character of the reactions, rather than any mechanistic feature.  相似文献   

2.
The paradigm that the cleavage of the radical anion of benzyl halides occurs in such a way that the negative charge ends up on the departing halide leaving behind a benzyl radical is well rooted in chemistry. By studying the kinetics of the reaction of substituted benzylbromides and chlorides with SmI2 in THF it was found that substrates para‐substituted with electron‐withdrawing groups (CN and CO2Me), which are capable of forming hydrogen bonds with a proton donor and coordinating to samarium cation, react in a reversed electron apportionment mode. Namely, the halide departs as a radical. This conclusion is based on the found convex Hammett plots, element effects, proton donor effects, and the effect of tosylate (OTs) as a leaving group. The latter does not tend to tolerate radical character on the oxygen atom. In the presence of a proton donor, the tolyl derivatives were the sole product, whereas in its absence, the coupling dimer was obtained by a SN2 reaction of the benzyl anion on the neutral substrate. The data also suggest that for the para‐CN and CO2Me derivatives in the presence of a proton donor, the first electron transfer is coupled with the proton transfer.  相似文献   

3.
《中国化学》2017,35(9):1469-1473
A phosphine‐catalyzed [4 + 2] annulation of α ‐substituted allenoate with exocyclic alkene moiety of oxindoles or indan‐1,3‐diones has been developed. Thus, under the catalysis of PPh3 (20 mol%), a series of spirooxindole‐ or spiroindan‐1,3‐dione‐cyclohexenes have been obtained in moderate to excellent yields and regioselectivity from the annulations of α ‐methyl allenoates with 3‐methyleneoxindoles or 2‐methyleneindan‐1,3‐diones. This method offers an easy access to structurally novel spirocyclohexenes.  相似文献   

4.
The kinetics of hyperbranched A2 + B3 systems is discussed theoretically with respect to the development of the 7 different structural units, the degree of branching, DB, and the monomer sequences considering the adjacent groups of a structural unit. For A2 + B3 systems, the comonomer ratio, the relative rate constants and the process conditions have an influence on the resulting structure as shown by numerical simulations. With increasing A:B ratios fA/B, the degree of branching will be increased. Also the relative reaction rate constants have a strong impact on the distribution of structural units, especially when the reaction rate constants for the pathway of the B3 monomer are changed. On the other hand, differences in the reaction rate constants for the pathway of the A2 monomer do not have any influence on the degree of branching. The simulation indicates that slow addition of either both monomers or just the B3 monomer has the strongest effect on the resulting DB. In all cases, the conversion is a critical issue to obtain high molecular weight products.

Degree of branching (DB) versus conversion of A‐functionalities (pA) for various monomer compositions.  相似文献   


5.
The 1,3‐dipolar cycloaddition (13DC) reactions of nitrile‐oxide NO 1 with two ethylenes, enamine 2a and enamine 2b , were computationally studied using B3LYP/6‐31G(d) DFT methods. The two possible ortho and meta regioselective channels were characterized and analyzed. The moderate polarity of these 13DC reactions is related to the high nucleophilic character of both ethylenes, and the moderate electrophilic nature of the NO 1 , that accounts for the relatively low calculated activation energies. Analysis of different forms of energies along the different reaction channels indicates that the present 13DC reactions are completely ortho regioselective, accordingly to the experimental outcomes. Electron localization function analysis indicates that these 13DC reactions proceed via a nonconcerted (two‐stage) one‐step mechanism.  相似文献   

6.
A novel polypyridine ligand, dipyrido[3,2‐a:2′,3′‐c]phenazine‐11‐carboxylic acid methyl ester (=dppz‐11‐CO2Me), and its ruthenium(II) complex, [Ru(bpy)2(dppz‐11‐CO2Me)]2+ ( 1 ), were synthesized and characterized. The binding properties of this complex to calf‐thymus DNA (CT‐DNA) were investigated by different spectrophotometric methods and viscosity measurements. The results suggest that the complex binds to DNA in an intercalative mode and serves as a molecular ‘light switch’ for DNA. When irradiated at 365 nm, the complex 1 promoted the photocleavage of plasmid pBR‐322 DNA.  相似文献   

7.
The kinetic model of the co‐polycondensation with A2 and AB2 type monomers is developed and the analytical expressions of the various molecular parameters of the products are derived rigorously. The monomer feed ratio (α) of A2 to AB2 significantly affects the molecular parameters and the critical condition of gelation. Gelation can be avoided if α is > . At the critical state, the degree of branching decreases firstly and reaches its minimum value at about α≈0.22. Then, it increases with increasing α‐value. In comparison with experimental results, non‐equal reactivity of the active groups should be considered.

  相似文献   


8.
The mechanisms and stereoselectivities of the [2 + 4] cycloaddition reaction of methylallenoate R1 with methyleneindolonone R2 catalyzed by DABCO (Equation 1) and DMAP (Equation 2) organocatalysts have been examined with density functional theory (M06‐2X) calculations. Several possible reaction pathways (paths 1a, 1b, and 1c for Equation 1 and paths 2a and 2b for Equation 2) were located and compared. The results of our study reveal that for both reactions, three reaction stages have been characterized: nucleophilic addition of the catalyst ( DABCO or DMAP ) to R1 (Stage I ), addition of the other reactant R2 (Stage II ), intramolecular cycloaddition and liberation of the catalyst ( DABCO or DMAP ) afforded the final product (Stage III ). For the DABCO ‐catalyzed cycloaddition, we predict that path 1a leading to P(E) is the most energy favorable pathway among the three possible pathways. The carbon–carbon bond formation step is the rate‐determining step (ΔG ?=23.6 kcal/mol). With DMAP catalyst, the same reaction gave P(Z) as the major product. The barrier for the rate‐determining step (addition of R1 to DMAP ) is 25.8 kcal/mol. The calculated results are in agreement with the experimental findings. Moreover, for both reactions, the analysis of global reactivity indexes has been carried out to examine the role of catalyst. The present study should provide a general mechanistic framework for the rational design of this kind of reactions.  相似文献   

9.
The synthesis and structure of heteroleptic tetrylenes containing bifunctional β‐diketiminate ligand are reported. Compounds were prepared via a protolytic reaction of free β‐diketimine {N‐[(2‐MeO)C6H5]}N═C(Me)CH═C(Me)N(H){N′‐[(2‐MeO)C6H5]} (LCOH) and {N‐[(2‐MeO)C6H5]}N?CHCH?CHN(H){N′‐[(2‐MeO)C6H5]} (LHOH), respectively, with corresponding bis(amide) – M[N(SiMe3)2]2 (M = Ge, Sn, Pb) – in equimolar ratio or via the salt elimination route from lithium precursors generated from LHOH/LCOH species and slight excess of SnCl2 or GeCl2.dioxane complex. Only heteroleptic complexes were obtained by the mentioned methods. Products were characterized by multinuclear NMR spectroscopy techniques and structures of four of them have been determined by X‐ray diffraction methods. Complexes LHOGeCl and LCOSnN(SiMe3)2 crystallize as monomers with the three‐coordinated metal centres by one chloro or amido ligand and one bidentate β‐diketiminato unit, in contrast to the structure of LCOSnCl, which reveals a dimeric character and compound LCOPbN(SiMe3)2, where the central atom of lead is five‐coordinated by methoxy groups of the ligand. Complex LCOSnN(SiMe3)2 was tested as a catalyst for polymerization of various epoxides. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
The regioselective effects of tert‐butyl or bromine as the position‐protecting group of feruloytyamide on the oxidative coupling reactions for the synthesis of natural (±)‐canabisin D were investigated in detail. The coupling yield of 8‐8‐coupled aryldihydronaphthalene product of 5‐Br‐feruloytyamide was higher than that of tert‐butyl substituted precursor under FeCl3·6H2O‐acetone‐water oxidative condition.  相似文献   

11.
Herein, we report a regioselective alkenyl electrophile synthesis from unactivated olefins that is based on a direct and regioselective C?H thianthrenation reaction. The selectivity is proposed to arise from an unusual inverse‐electron‐demand hetero‐Diels–Alder reaction. The alkenyl sulfonium salts can serve as electrophiles in palladium‐ and ruthenium‐catalyzed cross‐coupling reactions to make alkenyl C?C, C?Cl, C?Br, and C?SCF3 bonds with stereoretention.  相似文献   

12.
A new global potential energy surface for the ground state of MgH2 was constructed using the permutation invariant polynomial neural network method. About 70 000 ab initio energy points were calculated via the multi‐reference configuration interaction method method with aug‐cc‐pVTZ and aug‐cc‐pVQZ basis sets, and these points were used to construct the potential energy surface (PES). To avoid basis set superposition error, the basis set was extrapolated to the complete basis set limit using the two point energy extrapolation formula. The root mean square error of the present PES is only 8.85 meV. Initial state (v = 0, j = 0) dynamics studies were performed using the time‐dependent wave packet method with a second‐order split operator for the total angular momentum J up to a value of 50. Furthermore, the reaction probability, integral cross section, and thermal rate constant are reported and compared with available theoretical studies.  相似文献   

13.
A [3+2] cycloaddition (32CA) reaction between a thiocarbonyl ylide ( TCY 2 ) and an electron-deficient enone ( TFB 3 ) in tetrahydrofuran (THF) was studied in the light of molecular electron density theory at the DFT-B3LYP/6-31G(d) computational level to probe energetics and selectivities. The reaction was investigated in four competitive reaction paths associated with the CC and CO chemoselectivities in TFB 3 . An analysis of the density functional theory-based reactivity indices shows that TCY 2 is a strong nucleophile, and TFB 3 is also a strong electrophile. Although both C4─C5 and C6─O7 double bonds of TFB 3 can potentially be involved in 32CA reaction toward TCY 2 , computed relative Gibbs free energies obviously demonstrate that C6─O7 involvement in a quite regioselective manner is entirely preferred over the C4─C5 one in an excellent agreement with the chemoselectivity and regioselectivity observed experimentally. Interestingly, such a chemoselectivity could not be rationalized through assessment of the electrophilic Parr functions calculated at the C4, C5, C6, and O7 centers of TFB 3 . The global electron density transfer value, 0.31 e, calculated at the most energetically preferred transition state structure TS 1 involved within the C6─O7 chemoselective reaction channel demonstrates that this pseudodiradical type (pdr-type) 32CA reaction has a notable polar character.  相似文献   

14.
15N NMR data of a series of 3‐alkyl[aryl] substituted 5‐trichloromethyl‐1,2‐dimethyl‐1H‐pyrazolium chlorides (where the 3‐substituents are H, Me, Et, n‐Pr, n‐Bu, n‐Pe, n‐Hex, (CH2)5CO2Et, CH2Br, Ph and 4‐Br‐C6H4), are reported. The 15N substituent chemical shifts (SCS) parameters are determined and these data are compared with the 13C SCS values and data obtained by MO calculations. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
β‐Diimine zinc dichloride complexes [CH2{C(Me)NAr}2]ZnCl2 [Ar = Mes ( 1 ), Dipp ( 2 )] were obtained from the reactions of ZnCl2 with the corresponding β‐iminoamines [ArN(H)C(Me)CHC(Me)NAr]. Complexes 1 and 2 were characterized by multinuclear NMR (1H, 13C) and IR spectroscopy, elemental analyses as well as by single‐crystal X‐ray diffraction. The energy differences between the enamine‐imine tautomers of the β‐iminoamines were quantified by quantum chemical calculations.  相似文献   

16.
Kadsufolins A–D ( 1 – 4 , resp.), four new dibenzocyclooctane‐type lignans, were isolated from the roots and stems of Kadsura oblongifolia, together with eleven known lignans. Their structures and configurations were elucidated by spectroscopic methods including 2D‐NMR techniques. The compounds were also evaluated for cytotoxic activity against human tumor cell lines A549 (lung carcinoma), DU145 (prostate carcinoma), KB (epidermoid carcinoma of the nasopharynx), and HCT‐8 (ileocecal carcinoma). Kadsufolin A ( 1 ), kadsufolin D ( 4 ), angeloylbinankadsurin A, and heteroclitin B were found to show cytotoxic activities against A549, DU145, KB and HCT‐8 with GI50 values of 5.1–20.0 μg/ml.  相似文献   

17.
Three new isomeric biisoflavonoids, dapholidins A–C ( 1 – 3 , resp.), have been isolated from the AcOEt‐soluble fraction of the MeOH‐soluble extract of the roots of Daphne oleoides, along with the known compounds daphwazirin ( 4 ), daphnetin 8‐Oβ‐D ‐glucopyranoside ( 5 ), daphnin ( 6 ), daphneticin 4″‐Oβ‐D ‐glucopyranoside ( 7 ), and 6,7‐dihydroxy‐3‐methoxy‐8‐[2‐oxo‐2H‐1‐benzopyran‐7‐(Oβ‐D ‐glucopyranosyl)‐8‐yl]‐2H‐1‐benzopyran‐2‐one ( 8 ). The structures of the new compounds were determined by spectroscopic analyses, including 1D‐ and 2D‐NMR.  相似文献   

18.
The syntheses of the five 2,2′: 6′,2″‐terpyridine (tpy) ligands 5 – 9 functionalized in the 4′‐position with a hydrazone substituent RR′C?N? NH (R=R′=Me; R=H, R′=4‐BrC6H4, 4‐O2NC6H4, 4‐MeOC6H4, or 3,5‐(MeO)2C6H3) are described. Protonation of the tpy domain of the ligands is facile. Solution behaviour has been studied by NMR and electronic spectroscopies. Representative structural data are presented for neutral and monoprotonated ligands, and illustrate that H‐bonding involving the formal amine NH unit is a dominant structural motif in all cases.  相似文献   

19.
A series of α‐(fluoro‐substituted phenyl)pyridines have been synthesized by means of a palladium‐catalyzed cross‐coupling reaction between fluoro‐substituted phenylboronic acid and 2‐bromopyridine or its derivatives. The reactivities of the phenylboronic acids containing di‐ and tri‐fluoro substituents with α‐pyridyl bromide were investigated in different catalyst systems. Unsuccessful results were observed in the Pd/C and PPh3 catalyst system due to phenylboronic acid containing electron‐withdrawing F atom(s). For the catalyst system of Pd(OAc)2/PPh3, the reactions gave moderate yields of 55% –80%, meanwhile, affording 10% –20% of dimerisation (self‐coupling) by‐products, but trace products were obtained in coupling with 2,4‐difluorophenylboronic acids because of steric hinderance. Pd(PPh3)4 was more reactive for boronic acids with sterically hindering F atom(s), and the coupling reactions gave good yields of 90% and 91% without any self‐coupling by‐product.  相似文献   

20.
A series of α‐keto‐β‐diimine nickel complexes (Ar‐N = C(CH3)‐C(O)‐C(CH3)=N‐Ar)NiBr2; Ar = 2,6‐R‐C6H3‐, R = Me, Et, iPr, and Ar = 2,4,6‐Me3‐C6H3‐) was prepared. All corresponding ligands are unstable even under an inert atmosphere and in a freezer. Stable copper complex intermediates of ligand synthesis and ethyl substituted nickel complex were isolated and characterized by X‐ray. All nickel complexes were used for the polymerization of ethene, propylene, and hex‐1‐ene to investigate their livingness and the extent of chain‐walking. Low‐temperature propene polymerization with less bulky ortho‐substituents was less isospecific than the one with isopropyl derivative. Propene stereoblock copolymers were prepared by iPr derivative combining the polymerization at low temperature to prepare isotactic polypropylene (PP) block and at a higher temperature, supporting chain‐walking, to obtain amorphous regioirregular PP block. Alternatively, a copolymerization of propene with ethene was used for the preparation of amorphous block. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2440–2449  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号