首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. A finite element method to approximate the vibration modes of a structure in contact with an incompressible fluid is analyzed in this paper. The effect of the fluid is taken into account by means of an added mass formulation, which is one of the most usual procedures in engineering practice. Gravity waves on the free surface of the liquid are also considered in the model. Piecewise linear continuous elements are used to discretize the solid displacements, the variables to compute the added mass terms and the vertical displacement of the free surface, yielding a non conforming method for the spectral coupled problem. Error estimates are settled for approximate eigenfunctions and eigenfrequencies. Implementation issues are discussed and numerical experiments are reported. In particular the method is compared with other numerical scheme, based on a pure displacement formulation, which has been recently analyzed. Received August 31, 1998 / Published online July 12, 2000  相似文献   

2.
The stability of modified cross-grid elements for the approximation of the Stokes problem using continuous piecewise linear polynomials to approximate velocities and piecewise constants to approximate pressures is proved. A key feature of the method is that the mesh for pressure is modified so that the method is stable without augmenting pressure jumps. A numerical test which confirms the stability and the optimal order error estimate is presented.  相似文献   

3.
In this paper, we analyze a divergence-free finite element method to solve a fluid–structure interaction spectral problem in the three-dimensional case. The unknowns of the resulting formulation are the fluid and solid displacements and the fluid pressure on the interface separating both media. The resulting mixed eigenvalue problem is approximated by using appropriate basis of the divergence-free lowest order Raviart–Thomas elements for the fluid, piecewise linear elements for the solid and piecewise constant elements for the interface pressure. It is proved that eigenvalues and eigenfunctions are correctly approximated and some numerical results are reported in order to assess the performance of the method.  相似文献   

4.
1引 言 对于各向同性,均匀介质的平面线弹性问题,当Lamé常数λ→∞(泊松率v→0.5)时,即对于几乎不可压介质,通常的协调有限元格式的解往往不再收敛到原问题的解,或者达不到最优收敛阶,这就是所谓的闭锁现象(见[3],[7],[8]及[10]).究其原因,在通常的有限元分析中,其误差估计的系数与λ有关,当λ→∞时,该系数将趋于无穷大.因此为克服闭锁现象就需要构造特殊的有限元格式,使得当λ→∞时,有限元逼近解仍然收敛到原问题的解.  相似文献   

5.

Convergence of an approximate method for determining vibrational eigenpairs of an elastic solid containing an incompressible fluid is examined. The field variables are solid displacement and fluid pressure. We show that in suitable Sobolev spaces a variational formulation exists whose solution eigenvalues and eigenfunctions are identified with those of a compact operator. A nonconforming finite element approximation of this variational problem is described and optimal a priori error estimates are obtained for both the eigenvalues and eigenfunctions.

  相似文献   


6.
We consider mixed finite elements for the plane elasticity system and the Stokes equation. For the unmodified Hellinger-Reissner formulation of elasticity in which the stress and displacement fields are the primary unknowns, we derive two new nonconforming mixed finite elements of triangle type. Both elements use piecewise rigid motions to approximate the displacement and piecewise polynomial functions to approximate the stress, where no vertex degrees of freedom are involved. The two stress finite element ...  相似文献   

7.
In this article, we propose and study different mixed variational methods in order to approximate the Signorini problem with friction using finite elements. The discretized normal and tangential constraints at the contact interface are expressed by using either continuous piecewise linear or piecewise constant Lagrange multipliers in the saddle?point formulation. A priori error estimates are established and several numerical examples corresponding to the different choices of the discretized normal and tangential constraints are carried out. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

8.
This paper deals with a finite element method to solve interior fluid-structure vibration problems valid for compressible and incompressible fluids. It is based on a displacement formulation for both the fluid and the solid. The pressure of the fluid is also used as a variable for the theoretical analysis yielding a well posed mixed linear eigenvalue problem. Lowest order triangular Raviart-Thomas elements are used for the fluid and classical piecewise linear elements for the solid. Transmission conditions at the fluid-solid interface are taken into account in a weak sense yielding a nonconforming discretization. The method does not present spurious or circulation modes for nonzero frequencies. Convergence is proved and error estimates independent of the acoustic speed are given. For incompressible fluids, a convenient equivalent stream function formulation and a post-process to compute the pressure are introduced.

  相似文献   


9.
Summary. This paper deals with a post-process to obtain a more accurate approximation of the fluid pressure from a finite element computation of the vibration modes of a fluid-structure coupled system. The underlying finite element method, based on a displacement formulation for both media, consists of using Raviart-Thomas elements for the fluid combined with standard continuous elements for the solid. An easy to compute post-process of the pressure is derived. The relation between this post-process and an alternative finite element approximation of the problem based on discretizing the fluid pressure by enriched Crouzeix-Raviart elements is studied. Higher order estimates for the L2 norm of the post-processed pressure are proved by exploiting this relation. As a by-product, higher order L2 estimates for the solid displacements obtained with the original method are also proved.Member of CIC, Provincia de Buenos Aires, ArgentinaMember of CONICET, Argentina. Partially supported by FONDECYT 7.990.075 and FONDAP in Applied Mathematics, ChilePartially supported by FONDECYT 1.990.346 and FONDAP in Applied Mathematics, Chile  相似文献   

10.
In this paper, we propose and study different mixed variational methods in order to approximate with finite elements the unilateral problems arising in contact mechanics. The discretized unilateral conditions at the candidate contact interface are expressed by using either continuous piecewise linear or piecewise constant Lagrange multipliers in the saddle-point formulation. A priori error estimates are established and several numerical studies corresponding to the different choices of the discretized unilateral conditions are achieved.

  相似文献   


11.
In this paper we develop an a posteriori error analysis of a fully-mixed finite element method for a fluid-solid interaction problem in 2D. The media are governed by the elastodynamic and acoustic equations in time-harmonic regime, respectively, the transmission conditions are given by the equilibrium of forces and the equality of the corresponding normal displacements, and the fluid is supposed to occupy an annular region surrounding the solid, so that a Robin boundary condition imitating the behavior of the Sommerfeld condition is imposed on its exterior boundary. Dual-mixed approaches are applied in both domains, and the governing equations are employed to eliminate the displacement u of the solid and the pressure $p$ of the fluid. In addition, since both transmission conditions become essential, they are enforced weakly by means of two suitable Lagrange multipliers. The unknowns of the solid and the fluid are then approximated by a conforming Galerkin scheme defined in terms of PEERS elements in the solid, Raviart-Thomas of lowest order in the fluid, and continuous piecewise linear functions on the boundary. As the main contribution of this work, we derive a reliable and efficient residual-based a posteriori error estimator for the aforedescribed coupled problem. Some numerical results confirming the properties of the estimator are also reported.  相似文献   

12.
In this paper, we develop an a posteriori error analysis of a mixed finite element method for a fluid–solid interaction problem posed in the plane. The media are governed by the acoustic and elastodynamic equations in time-harmonic regime, respectively, and the transmission conditions are given by the equilibrium of forces and the equality of the normal displacements of the solid and the fluid. The coupling of primal and dual-mixed finite element methods is applied to compute both the pressure of the scattered wave in the linearized fluid and the elastic vibrations that take place in the elastic body. The finite element subspaces consider continuous piecewise linear elements for the pressure and a Lagrange multiplier defined on the interface, and PEERS for the stress and rotation in the solid domain. We derive a reliable and efficient residual-based a posteriori error estimator for this coupled problem. Suitable auxiliary problems, the continuous inf-sup conditions satisfied by the bilinear forms involved, a discrete Helmholtz decomposition, and the local approximation properties of the Clément interpolant and Raviart–Thomas operator are the main tools for proving the reliability of the estimator. Then, Helmholtz decomposition, inverse inequalities, and the localization technique based on triangle-bubble and edge-bubble functions are employed to show the efficiency. Finally, some numerical results confirming the reliability and efficiency of the estimator are reported.  相似文献   

13.
We consider a finite element discretization of the primal first‐order least‐squares mixed formulation of the second‐order elliptic problem. The unknown variables are displacement and flux, which are approximated by equal‐order elements of the usual continuous element and the normal continuous element, respectively. We show that the error bounds for all variables are optimal. In addition, a field‐based least‐squares finite element method is proposed for the 3D‐magnetostatic problem, where both magnetic field and magnetic flux are taken as two independent variables which are approximated by the tangential continuous and the normal continuous elements, respectively. Coerciveness and optimal error bounds are obtained. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2004.  相似文献   

14.
In this paper, we provide a new mixed finite element approximation of the varia-tional inequality resulting from the unilateral contact problem in elasticity. We use the continuous piecewise P2-P1 finite element to approximate the displacement field and the normal stress component on the contact region. Optimal convergence rates are obtained under the reasonable regularity hypotheses. Numerical example verifies our results.  相似文献   

15.
In this paper, we construct new finite element methods for the approximation of the equations of linear elasticity in three space dimensions that produce direct approximations to both stresses and displacements. The methods are based on a modified form of the Hellinger-Reissner variational principle that only weakly imposes the symmetry condition on the stresses. Although this approach has been previously used by a number of authors, a key new ingredient here is a constructive derivation of the elasticity complex starting from the de Rham complex. By mimicking this construction in the discrete case, we derive new mixed finite elements for elasticity in a systematic manner from known discretizations of the de Rham complex. These elements appear to be simpler than the ones previously derived. For example, we construct stable discretizations which use only piecewise linear elements to approximate the stress field and piecewise constant functions to approximate the displacement field.

  相似文献   


16.
Compressible miscible displacement of one fluid by another in porous media is modelled by a nonlinear parabolic system. A finite element procedure is introduced to approximate the concentration of one fluid and the pressure of the mixture. The concentration is treated by a Galerkin method while the pressure is treated by a parabolic mixed finite element method. The effect of dispersion, which is neglected in [1], is considered. Optimal order estimates in L2 are derived for the errors in the approximate solutions.  相似文献   

17.
A finite section method for the approximate solution of singular integral equations with piecewise continuous coefficients on intervals is considered. The problem is transformed in such a way that results which were previously obtained for singular integral equations on the unit circle using localization methods in Banach algebras are applicable to it. Thus, necessary and sufficient conditions for the stability of the approximation method can be proved.  相似文献   

18.
This article studies a posteriori error analysis of fully discrete finite element approximations for semilinear parabolic optimal control problems. Based on elliptic reconstruction approach introduced earlier by Makridakis and Nochetto [25], a residual based a posteriori error estimators for the state, co-state and control variables are derived. The space discretization of the state and co-state variables is done by using the piecewise linear and continuous finite elements, whereas the piecewise constant functions are employed for the control variable. The temporal discretization is based on the backward Euler method. We derive a posteriori error estimates for the state, co-state and control variables in the $L^\infty(0,T;L^2(\Omega))$-norm. Finally, a numerical experiment is performed to illustrate the performance of the derived estimators.  相似文献   

19.
In this paper, a new approach for finding the approximate solution of the Stokes problem is introduced. In this method the problem is transformed to an equivalent optimization problem. Then, by considering it as a distributed parameter control system, the theory of measure is used to approximate the velocity functions by piecewise linear functions. Then, the approximate values of pressure are obtained by a finite difference scheme.  相似文献   

20.
In this paper rectangular plates made of functionally graded materials (FGMs) are studied. A two-constituent material distribution through the thickness is considered, varying with a simple power rule of mixture. The equations governing the FGM plates are determined using a variational formulation arising from the Reissner–Mindlin theory. To approximate the problem a simple locking-free Discontinuous Galerkin finite element of non-conforming type is used, choosing a piecewise linear non-conforming approximation for both rotations and transversal displacement. Several numerical simulations are carried out in order to show the capability of the proposed element to capture the properties of plates of various gradings, subjected to thermo-mechanical loads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号