首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel nanocomposite polymeric membranes containing nanosized (30–100 nm) polyaniline (PANI) particles dispersed in poly(vinyl alcohol) (PVA) were prepared and used in the pervaporation separation of water–isopropanol feed mixtures ranging from 10 to 50 mass% of water at 30 °C. Of the three nanocomposite membranes prepared, the membrane containing 40:60 surface atomic concentration ratio of PANI:PVA produced the highest selectivity of 564 compared to a value of 77 observed for the plain PVA membrane. Flux of the nanocomposite membranes was lower than those observed for the plain PVA membrane, but selectivity improved considerably. Membranes were characterized by differential scanning calorimetry, dynamic mechanical thermal analyzer, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and scanning electron microscopy. The highest selectivity with the lowest flux was observed for 10 mass% water containing feed mixture. Flux increased with increasing amount of water in the feed, but selectivity decreased considerably. These results were attributed to the acid-doped PANI particles in the PVA membrane as a result of change in the micromorphology of the nanocomposite membranes. In addition, molar mass between cross-links and fractional free volume of the membranes are responsible for the varying membrane performance. Temperature effect on permeability was investigated for 10 mass% water containing feed with the membrane containing higher concentration of PANI particles, the presence of which could be responsible for varied effect of water permeation through the membrane. Membranes of this study could remove as much as 98% of water from the feed.  相似文献   

2.
Dense membranes were prepared from poly(vinyl alcohol)–poly(N-vinyl pyrrolidone) (PVA–PVP) blends of different compositions and studied in swelling and dehydration by pervaporation of three organic solvents contaminated by 5 wt% water. The swelling generally increases with the PVP content. No extraction occurs in water–tetrahydrofuran (THF) and water–methyl ethyl ketone (MEK) mixtures. In ethanol containing 10 wt% of water, there is no extraction for blends containing less than 40 wt% PVP and an increasing extraction beyond this PVP content. The pervaporation flux of the water–ethanol mixture increases drastically at the same threshold whereas the water permselectivity falls to a low level. The values of the diffusion and permeability coefficients determined from transient permeation of the test water–ethanol mixture exhibit a similar sudden increase at the same PVP content threshold. This singular behavior of the blend membranes is interpreted by a strong affinity of the PVP component to ethanol, combined with a disappearance of crystallites in the blend at this threshold. Consequently the amorphous membrane can swell freely according to the affinity of the PVP component, leading to the observed behavior.  相似文献   

3.
Poly(vinyl alcohol) (PVA) was blended with soluble polyelectrolyte complex (PEC) made from poly(diallyldimethylammonium chloride) (PDDA) and sodium carboxymethyl cellulose (CMCNa). Crystallinity, thermal transition, and thermal stability of the PVA/PEC blends were characterized by using wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), and thermal gravity analysis (TGA), respectively. Surface morphology, cross-section and phase structure of the blend membranes were examined by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). Surface hydrophilicity and swelling behavior of the blend membranes were examined by water contact angle (CA) and swelling tests. Blend membranes were subjected to isopropanol dehydration, and effects of blend composition, feed composition and feed temperature on pervaporation performance are discussed in terms of phase structures of blend membranes. A performance of J = 1.35 kg/m2 h, α = 1002, was obtained for blend membrane containing 50 wt% PEC in dehydrating 10 wt% water–isopropanol at 70 °C.  相似文献   

4.
Sodium alginate and hydroxyethylcellulose blend membranes were prepared by solution casting, crosslinked with glutaraldehyde and urea–formaldehyde–sulfuric acid mixture. Crosslinking was confirmed by Fourier transform infrared spectroscopy, while the blend compatibility was studied by differential scanning calorimetry and scanning electron microscopy. Membranes were tested for pervaporation separation of feed mixtures ranging from 10 to 50 mass% water in water + 1,4-dioxane and water + tetrahydrofuran mixtures at 30 °C. For 10 mass% of the feed mixture, pervaporation experiments were also carried out at higher temperatures (40 and 50 °C). By increasing the temperature, a slight increase in flux with a considerable decrease in selectivity was observed for all the membranes and for both the mixtures. The blend membranes exhibited different pervaporation performance for both the binary mixtures investigated. For water + 1,4-dioxane mixture, the pervaporation performance did not improve much after blending, whereas for water + tetrahydrofuran mixture, the pervaporation performance has improved considerably over that of plain sodium alginate membrane.  相似文献   

5.
Dense membranes made by crosslinking of poly(vinyl alcohol) (PVA) with poly(acrylic acid) (PAA) were prepared and tested in pervaporation and differential permeation of water–alcohol mixtures. Instead of a decrease of permeation flux as generally observed with most crosslinking agents, an increase in the permeability was observed with PAA crosslinked membranes at low PAA contents. The permeation flux increases with PAA contents in the polymer with no selectivity reduction for membranes containing less than 15 wt. % PAA. The membranes show good performances to water–2-propanol and water–ethanol mixtures, i.e. high fluxes and high selectivities to pure water. The membranes were stable and highly permeable to water. The enhancement of the permeability of PVA can be explained by a reduced crystallinity and an improved diffusivity due to the presence of PAA.  相似文献   

6.
Novel nanocomposite membranes (PVA–CNT(CS)) were prepared by incorporating chitosan-wrapped multiwalled carbon nanotube (MWNT) into poly(vinyl alcohol) (PVA). To further explore the intrinsic correlation between pervaporation performance and free volume characteristics, molecular dynamics simulation was first introduced to qualitatively analyze the contribution of carbon nanotube incorporation on improving free volume characteristics of the nanocomposite membranes. Secondly, the pervaporation performance of PVA–CNT(CS) nanocomposite membranes was investigated using permeation flux and separation factor as evaluating parameters. For benzene/cyclohexane (50/50, w/w) mixtures at 323 K, permeation flux and separation factor of pure PVA membrane are only 20.3 g/(m2 h) and 9.6, respectively, while the corresponding values of PVA–CNT(CS) (CNT content: 1%) nanocomposite membrane are 65.9 g/(m2 h) and 53.4. In order to explain the simultaneous increase of permeation flux and separation factor, as well as to check the calculation reliability of molecular dynamics simulation, positron annihilation lifetime spectroscopy (PALS) analysis was employed.  相似文献   

7.
Homogeneous membranes were prepared by blending poly(acrylic acid) with poly(vinyl alcohol). These blend membranes were evaluated for the selective separation of alcohols from toluene by pervaporation. The flux and selectivity of the membranes were determined both as a function of the blend composition and of the feed mixture composition. The results showed that a polymer blending method could be very useful to develop new membranes with improved permselectivity. The pervaporation properties could be optimized by adjusting the blend composition. All the blend membranes tested showed a decrease in flux with increasing poly(vinyl alcohol) content for both methanol—toluene and ethanol—toluene liquid mixtures. The alcohols permeated preferentially through all tested blend membranes, and the selectivity values increased with increasing poly(vinyl alcohol) content. The pervaporation characteristics of the blend membranes were also strongly influenced by the feed mixture composition. The fluxes increased exponentially with increasing alcohol concentration in the feed mixtures, whereas the selectivities decreased for both liquid mixtures.  相似文献   

8.
用原位聚合法制备聚丙烯酰胺/蒙脱土(PAM/MMT)纳米复合材料, 通过透射电镜研究了蒙脱土在聚丙烯酰胺基体中的形貌和分布. 结果表明, 蒙脱土以片层结构分布在聚合物基体中. 用超声波分散聚乙烯醇和聚丙烯酰胺-蒙脱土共混铸膜液制得共混膜, 用红外吸收光谱和扫描电镜研究了两者的相互作用和形貌. 考察了共混膜在异丙醇-水混合溶液中的溶胀吸附性能及共混比和蒙脱土含量对膜分离性能的影响, 结果显示, 聚乙烯醇膜中添加适量的蒙脱土纳米粒子可以大大改善膜的分离选择性.  相似文献   

9.
聚乙烯醇/纳米纤维素复合膜的渗透汽化性能及结构表征   总被引:6,自引:0,他引:6  
将聚乙烯醇/纳米纤维素(PVA/NCC)复合膜应用于乙醇-水混合溶液的渗透汽化脱水过程,探讨了纳米纤维素对膜的溶胀性能、机械性能和渗透汽化性能的影响; 利用原子力显微镜(AFM)探测了纳米纤维素的形貌特征; 采用傅里叶变换红外光谱仪(FTIR)、扫描电镜(SEM)、差示扫描量热仪(DSC)和热重分析仪(TGA)对膜结构...  相似文献   

10.
Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes   总被引:4,自引:0,他引:4  
In this study, barrier membranes were prepared from poly(vinyl alcohol) (PVOH) with different amounts of cellulose nanocrystals (CNXLs) as filler. Poly(acrylic acid) (PAA) was used as a crosslinking agent to provide water resistance to PVOH. The membranes were heat treated at various temperatures to optimize the crosslinking density. Heat treatment at 170 °C for 45 min resulted in membranes with improved water resistance without polymer degradation. Infrared spectroscopy indicated ester bond formation with heat treatment. Mechanical tests showed that membranes with 10% CNXLs/10% PAA/80% PVOH were synergistic and had the highest tensile strength, tensile modulus and toughness of all the membranes studied. Polarized optical microscopy showed agglomeration of CNXLs at filler loadings greater than 10%. Differential thermogravimetric analysis (DTGA) showed a highly synergistic effect with 10% CNXL/10% PAA/80% PVOH and supported the tensile test results.Transport properties were studied, including water vapor transport rate and the transport of trichloroethylene, a representative industrial toxic material. Water vapor transmission indicated that all the membranes allowed moisture to pass. However, moisture transport was reduced by the presence of both CNXLs and PAA crosslinking agent. A standard time lag diffusion test utilizing permeation cups was used to study the chemical barrier properties. The membranes containing ≥10% CNXLs or PAA showed significantly reduced flux compared to the control. The CNXLs were then modified by surface carboxylation in order to better understand the mechanism of transport reduction. While barrier performance improvements were minimal, the chemical modification improved the dispersion of the modified CNXLs which led to improved performance. Of special note was an increase in the initial degradation temperatures of both modified and unmodified systems, with the modified system showing an initial degradation temperature >100 °C higher than the cellulose alone. This may reflect more extensive crosslinking in the modified composite.  相似文献   

11.
Poly(vinyl alcohol) (PVA) membranes crosslinked with glutaraldehyde (GA) were prepared by a solution method for the pervaporation separation of acetic acid-water mixtures. In the solution method, dry PVA films were crosslinked by immersion for 2 days at 40°C in reaction solutions which contained different contents of GA, acetone and a catalyst, HCl. In order to fabricate the crosslinked PVA membranes which were stable in aqueous solutions, acetone was used as reaction medium in stead of aqueous inorganic salt solutions which have been commonly used in reaction solution for PVA crosslinking reaction. The crosslinking reaction between the hydroxyl group of PVA and the aldehyde group of GA was characterized by IR spectroscopy. Swelling measurements were carried out in both water and acetic acid to investigate the swelling behavior of the membranes. The swelling behaviour of a membrane fabricated at different GA content in a reaction solution was dependent on crosslinking density and chemical functional groups created as a result of the reaction between PVA and GA, such as the acetal group, ether linkage and unreacted pendent aldehydes in PVA. The pervaporation separation of acetic acid-water mixtures was performed over a range of 70–90 wt% acetic acid in the feed at temperatures varying from 35 to 50°C to examine the separation performances of the PVA membranes. Permeation behaviour through the membranes was analyzed by using pervaporation activation energies which had been calculated from the Arrhenius plots of permeation rates.  相似文献   

12.
Direct insertion probe pyrolysis mass spectrometry (DIP-MS) analyses of polycarbonate/poly(methyl methacrylate)/poly(vinyl acetate), (PC/PMMA/PVAc), ternary blends have been performed. The PC/PMMA/PVAc ternary blends were obtained by coalescing from their common γ-cyclodextrin-inclusion compounds (CD-ICs), through the removal of the γ-CD host (coalesced blend), and by a co-precipitation method (physical blend). The coalesced ternary blend showed different thermal behaviors compared to the co-precipitated physical blend. The stability of PC chains decreased due to the reactions of CH3COOH formed by deacetylation of PVAc above 300 °C, for both coalesced and physical blends. This process was more effective for the physical blend most likely due to the enhanced diffusion of CH3COOH into the amorphous PC domains, where it can further react producing low molecular weight PC fragments bearing methyl carbonate chain ends. The decrease in thermal stability of PC chains was less significant for the coalesced ternary blend indicating that the diffusion of CH3COOH was either somewhat limited or competed with intermolecular reactions between PMMA and PC and between PMMA and PVAc, which were detected and were associated with their close proximity in the intimately mixed coalesced PC/PMMA/PVAc ternary blend.  相似文献   

13.
Blend membranes prepared from poly(vinyl alcohol) (PVA) and chitosan (CS) were crosslinked with glutaraldehyde and used in the pervaporation dehydration of 1,4-dioxane. Membranes were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray diffraction (X-RD) to assess, respectively, the intermolecular interactions, thermal stability and crystallinity. Equilibrium sorption studies were carried out in pure liquids and binary mixtures of different compositions of water + 1,4-dioxane mixtures to assess the polymer–liquid interactions. The crosslinked membrane showed a good potential in breaking the azeotrope of 82 wt.% aqueous 1,4-dioxane giving a selectivity of 117 with a reasonable water flux of 0.37 kg/m2 h. The effect of operating parameters such as feed composition, membrane thickness and permeate pressure was evaluated.  相似文献   

14.
聚乙烯醇/聚乙烯吡咯烷酮碱性复合膜的制备及其性能   总被引:1,自引:0,他引:1  
通过在不同浓度KOH溶液中进行掺杂,制备出了聚乙烯醇/聚乙烯吡咯烷酮(PVA/PVP)碱性聚合物电解质膜.详尽考察了膜的组成、微观结构、热稳定性、离子电导率和甲醇吸收率.结果表明,PVA与PVP两者具有较好的相容性,当m(PVA)∶m(PVP)=1∶0.5时,膜断面致密、均匀,未发生大尺度相分离.PVP的混入可以极大提高复合膜的电导率和热稳定性.当m(PVA)∶m(PVP)=1∶1时,复合膜的电导率可达2.01×10-3 S.cm-1.PVA/PVP/KOH膜的甲醇吸收率随温度的升高没有明显变化,100℃时其甲醇吸收率仅为同条件下Nafion 115膜的1/4.这表明该复合膜有望作为一种新型的碱性直接甲醇燃料电池用固体电解质膜且可提高膜的使用温度.  相似文献   

15.
Submicron fibers of medium-molecular-weight poly(vinyl alcohol) (MMW-PVA), high-molecular-weight poly(vinyl alcohol) (HMW-PVA), and montmorillonite clay (MMT) in aqueous solutions were prepared by electrospinning technique. The effect of HMW-PVA and MMT on the morphology and mechanical properties of the MMW-PVA/HMW-PVA/MMT nanofibers were investigated for the first time. Scanning electron microscopy, viscometer, tensile strength testing machine, thermal gravimetric analyzer (TGA), and transmission electron microscopy (TEM) were utilized to characterize the PVA/MMT nanofibers morphology and properties. The MMW-PVA/HMW-PVA ratios and MMT concentration played important roles in nanofiber's properties. TEM data demonstrated that exfoliated MMT layers were well distributed within nanofibers. It was also found that the mechanical property and thermal stability were increased with HMW-PVA and MMT contents.  相似文献   

16.
聚乙烯醇/壳聚糖共混膜优先透醇性能的研究   总被引:7,自引:1,他引:7  
聚乙烯醇/壳聚糖共混膜优先透醇性能的研究王新平,沈之荃,张富尧,林荣轩(浙江大学高分子系,化学系,杭州,310027)关键词渗透蒸发,聚乙烯醇/壳聚糖共混物膜,乙醇水溶液本文首次报道利用亲水性的聚乙烯醇和壳聚糖制得具有很高的乙醇优先透过选择性的透醇型...  相似文献   

17.
Effects of nano-ceramic filler titanium oxide (TiO2) have been investigated on the ionic conductance of polymeric complexes consisting of poly(vinyl chloride) (PVC)/poly(ethyl methacrylate) (PEMA), and lithium perchlorate (LiClO4). The composite polymer blend electrolytes were prepared by solvent casting technique. The TiO2 nanofillers were homogeneously dispersed in the polymer electrolyte matrix and exhibited excellent interconnection with PVC/PEMA/PC/LiClO4 polymer electrolyte. The addition of TiO2 nanofillers improved the ionic conductivity of the polymer electrolyte to some extent when the content of TiO2 is 15 wt%. The addition of TiO2 also enhanced the thermal stability of the electrolyte. The changes in the structural and complex formation properties of the materials are studied by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) techniques. The scanning electronmicroscope image of nano-composite polymer electrolyte membrane confirms that the TiO2 nanoparticles were distributed uniformly in the polymer matrix.  相似文献   

18.
朱宝库 《高分子科学》2015,33(11):1491-1502
To functionalize poly(vinyl chloride)(PVC) for various applications, monomers containing tertiary amine group are incorporated into PVC via atom transfer radical polymerization(ATRP) initiated by the labile chlorines in their backbones. The kinetics of synthesis was carefully investigated, and it is proven that the grafting polymerization process can be effectively controlled by regulating the reaction time. The membranes are fabricated using PVC and copolymers by non-solvent induced phase separation(NIPS) process. The hydrophilicity and pore structure of copolymer membranes were enhanced as well, these membranes are endowed with positive charge. When PDMA%(i.e., the PDMA weight percentage in copolymer) is 31.1%, the flux and Victoria blue B rejection are 26.0 L?m?2?h?1(0.5 MPa) and 91.2%, respectively. Thus, the newly synthesized polymer is proven to be a promising material for dye separation with positive charges.  相似文献   

19.
Zhang Y  Ping G  Kaji N  Tokeshi M  Baba Y 《Electrophoresis》2007,28(18):3308-3314
We describe a microchip electrophoresis (MCE) method for the assay of unsaturated disaccharides of chondroitin sulfates, dermatan sulfates, and hyaluronic acid (HA). Poly(vinyl alcohol) (PVA) could be irreversibly adsorbed onto poly(methyl methacrylate) (PMMA) substrates and this approach was applicable for dynamic coating. The characteristics of the PMMA surface with PVA coating were evaluated in terms of the wettability, EOF, and adsorption of 2-aminoacridone (AMAC)-labeled disaccharide. The water contact angle decreased from 73 degrees on a pristine PMMA surface to 37.5 degrees on a PVA-coated surface, indicating that the PVA coating increased hydrophilicity. EOF was reduced approximately twofold and was relatively stable. Scanning electron microscopy and fluorescence microscopy images showed that adsorption of AMAC-labeled disaccharides was dramatically suppressed. Using the PVA coating, baseline separation of two pairs of glycosaminoglycan (GAG) disaccharide isomers, DeltaDi-diS(B)/DeltaDi-diS(D) and DeltaDi-0S/DeltaDi-HA, was achieved in Tris-borate buffer within 130 s by MCE.  相似文献   

20.
The miscibility and the thermal behaviour of chitosan acetate (ChA) with poly(vinyl alcohol) (PVA) have been investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). Chitosan is blended with poly(vinyl alcohol) in acetic acid solution and this solution is cast to prepare the blend film. From thermal curves the thermal transitions: Tg, Tm and characteristic temperatures of decomposition: Tdi, Tmax have been determined and compared. The influence of the degree of PVA hydrolysis on the thermal properties of blend systems has been discussed.Based upon the observation on the DSC analysis, the melting point of PVA is decreased when the amount of ChA in the blend film is increased. Though some broadening of the transition curves could be noticed (DSC, TGA and DMA), the obtained results suggest that in the solid ChA/PVA blends the components are poorly miscible. Only PVA sample with relatively low DH = 88% and hence low degree of crystallinity shows partial miscibility with ChA of relatively low molecular weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号