首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In rotational oscillatory rheological measurement techniques involving the plate-plate and cone-plate geometries, the interface between the measured liquid and the ambient atmosphere is sheared to the same extent as the liquid sample. In this paper, we look at the influence of a rheologically distinct lateral surface on the measured properties of the liquid and surface system when the surface is dynamically coupled to the bulk fluid. Inertia is taken into account, thus allowing for nonquasi-static velocity profiles in the massless surface film itself.  相似文献   

2.
The fluid flow of the liquid phase in the sol-gel-dip-coating process for SnO2 thin film deposition is numerically simulated. This calculation yields useful information on the velocity distribution close to the substrate, where the film is deposited. The fluid modeling is done by assuming Newtonian behavior, since the linear relation between shear stress and velocity gradient is observed. Besides, very low viscosities are used. The fluid governing equations are the Navier–Stokes in the two dimensional form, discretized by the finite difference technique. Results of optical transmittance and X-ray diffraction on films obtained from colloidal suspensions with regular viscosity, confirm the substrate base as the thickest part of the film, as inferred from the numerical simulation. In addition, as the viscosity increases, the fluid acquires more uniform velocity distribution close to the substrate, leading to more homogenous and uniform films.  相似文献   

3.
Several single‐component and two‐component imidazolium ionic liquids (ILs) ultrathin films were formed on Si substrates by a dip‐coating and heat treatment process. The formation and surface properties of the films were analyzed by means of ellipsometric thickness measurement, X‐ray photoelectron spectra and atomic force microscope. The adhesive and nanotribological behaviors of the films were evaluated by a homemade colloidal probe. A ball‐on‐plate tribometer was used to test the microtribological performances of these films. As a result, the two‐component ILs ultrathin film containing 80% solid‐like ILs phase shows more homogenous surface morphologies and optimal micro/nano‐tribological properties as compared to single‐component ILs films, which is ascribed to a synergic effect between the steady solid‐like ILs phase as the backbone and the proper amount of flowable liquid‐like ILs phase. By studying the influence of various solid/liquid ILs ratios on tribological properties of the two‐component ILs films, we might find the way to design ILs films with excellent comprehensive tribological properties. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Aqueous solutions polluted by contaminants different from those generally studied (phenol and chlorophenols) were treated in a falling film gas–liquid dielectric barrier discharge reactor. The lower was the Henry’s law constant of a molecule, the better was its removal percentage, regardless of its other chemical properties. In the case of saturated molecules, the removal mechanism is the transfer of pollutants from the liquid phase to the gas phase where they react with the active species of the discharge. For phenol, the reaction with ozone in the liquid phase was estimated to be responsible of about 30% of the removal. A computational fluid dynamic modelling provided a better understanding of the phenomena, indicating that mass transfer of pollutants from liquid to gas is accelerated due to (1) the intense mixing in the liquid film and (2) the reaction of the pollutant with the active species in the gaseous phase.  相似文献   

5.
A novel 'fluid-wall thermal equilibrium model' for the wall-fluid heat transfer boundary condition has been developed in this paper to capture the nano-scale physics of transient phase transition of a thin liquid argon film on a heated platinum surface and the eventual colloidal adsorption phenomenon as the evaporation is diminishing using molecular dynamics. The objective of this work is to provide microscopic characterizations of the dynamic thermal energy transport mechanisms during the liquid film evaporation and also the resulting non-evaporable colloidal adsorbed liquid layer at the end of the evaporation process. A nanochannel is constructed of platinum (Pt) wall atoms with argon as the working fluid. The proposed model is validated by heating liquid argon between two Pt walls and comparing the thermal conductivity and change in internal energy to thermodynamic properties of argon. Later on, phase change process is studied by simulating evaporation of a thin liquid argon film on a Pt wall using the proposed model. Gradual evaporation of the liquid film occurs although the film does not vaporize completely. An ultra-thin layer of liquid argon is noticed to have "adsorbed" on the platinum surface. An analysis similar to the theoretical study by Hamaker (1937) is performed for the non-evaporating film and the value of the Hamaker-type constant falls in the typical range. This analysis is done to quantify the non-evaporating film with an attempt to use molecular dynamics simulation results in continuum mechanics.  相似文献   

6.
We introduce general Monte Carlo simulation methods for determining the wetting and drying properties of model systems. We employ an interface-potential-based approach in which the interfacial properties of a system are related to the surface excess free energy of a thin fluid film in contact with a surface. Two versions of this approach are explored: a "spreading" method focused on the growth of a thin liquid film from a surface in a mother vapor and a "drying" method focused on the growth of a thin vapor film from a surface in a mother liquid. The former provides a direct measure of the spreading coefficient while the latter provides an analogous drying coefficient. When coupled with an independent measure of the liquid-vapor surface tension, these coefficients enable one to compute the contact angle. We also show how one can combine information gathered from application of the spreading and drying methods at a common state point to obtain direct measures of the contact angle and liquid-vapor surface tension. The computational strategies introduced here are applied to two model systems. One includes a monatomic Lennard-Jones fluid that interacts with a structureless substrate via a long-ranged substrate potential. The second model contains a monatomic Lennard-Jones fluid that interacts with an atomistically detailed substrate via a short-ranged potential. Expanded ensemble techniques are coupled with the interface potential approach to compile the temperature- and substrate strength-dependence of various interfacial properties for these systems. Overall, we find that the approach pursued here provides an efficient and precise means to calculate the wetting and drying properties of model systems.  相似文献   

7.
研究了甲醛-苯氧乙酸树脂对重金属离子铅、镉、汞的交换性能,并考察了温度、pH值、浓度等因素对交换性能的影响。结果表明,树脂对3种重金属离子的等温交换过程均符合Langmuir交换等温式,交换受液膜扩散控制;其交换容量可分别达1.85mmol/g、1.73mmol/g、1.13mmol/g。  相似文献   

8.
A new strategy for producing ordered polymeric films is proposed, which employs replication of interfacial instabilities. In the first step, a thin film of a monomeric fluid is brought in contact with a nonpolymerizable template layer of poly(dimethylsiloxane), and surface tension-driven convection is induced in the template liquid. In the second stage, Bénard cells replicated in the monomeric layer by a viscous drug are trapped in the solid state by UV-induced polymerization. Following this step, the template fluid is removed. The topographic patterns "frozen" in the polymeric film have lateral and vertical periodicity determined by the properties of the template fluid.  相似文献   

9.
An extended nonequilibrium molecular dynamics technique has been developed to investigate the transport properties of pressure-driven fluid flow in thin nanoporous membranes. Our simulation technique allows the simulation of the pressure-driven permeation of liquids through membranes while keeping a constant driving pressure using fluctuating walls. The flow of argon in the liquid state was simulated on applying an external pressure difference of 2.4x10(6) Pa through the slitlike and cylindrical pores. The volume flux and velocity distribution in the membrane pores were examined as a function of pore size, along with the interaction with the pore walls, and these were compared with values estimated using the Hagen-Poiseuille flow. The calculated velocity strongly depends on the strength of the interaction between the fluid and the atoms in the wall when the pore size is approximately<20sigma. The calculated volume flux also shows a dependence on the interaction between the fluid and the atoms in the wall. The Hagen-Poiseuille law overestimates or underestimates the flux depending on the interaction. From the analysis of calculated results, a good linear correlation between the density of the fluid in the membrane pores and the deviation of the flux estimated from the Hagen-Poiseuille flow was found. This suggests that the flux deviation in nanopore from the Hagen-Poiseuille flow can be predicted based on the fluid density in the pores.  相似文献   

10.
Thin film lubrication (TFL) is a condition in which the lubricating features between two surfaces in relative motion are determined by the combination of the properties of the surfaces and the lubricant and viscosity of the lubricant. The effects imposed by couple stress on lubrication characteristics cannot be disregarded in this regime where the ordered molecules dominate the fluid field. There are different tensor measures and constitutive equations in this case other than Newtonian case. The lubrication of two-phase (solid phase and liquid phase) fluid is investigated in this paper. The existence of couple stress will enhance the lubricant viscosity and hence increase the film thickness and improve the load-carrying capability. Size-dependent effects can be seen in the lubrication with couple stress, and the thinner the lubricating film is, the more obvious the effect will be.  相似文献   

11.
The spreading of a lens of one liquid on the surface of another liquid is examined. Lubrication theory is used to derive a coupled system of equations for the air-liquid and liquid-liquid interfaces. In the case of highly viscous lenses, extensional stresses are promoted and an additional equation for the lens velocity is derived. The potential singularity at the three-phase line is relieved by a microscopic precursor layer of the spreading fluid assumed to be present ahead of the macroscopic lens. This layer is stabilised via the inclusion of disjoining pressure effects in the lens. The results of our full parametric study show that, for weak gravitational forces, the shape of the lens at equilibrium depends solely on the surface tension ratio for sufficiently deep substrate thicknesses. For thin substrates, the underlying liquid film deforms severely near the point of deposition exhibiting flattening and dimpling.  相似文献   

12.
We have performed molecular dynamics simulation studies of the structural, thermodynamic, and dynamical properties of liquid-vapor interfaces of pure and binary Stockmayer fluids of different polarity. The density profiles, the width of the liquid-vapor interface, and the orientational structure of the interfaces are calculated to characterize the structural aspects of the interfaces. Among the thermodynamic properties, we have computed the surface tension and also the free energy of transfer of a charged solute across the liquid-vapor interface for both pure and mixed fluids. Among the dynamical properties of the interfaces, we have calculated the time dependence of the velocity and angular velocity autocorrelation functions, continuous and intermittent survival probabilities, mean square displacements, diffusion coefficients, and also the dipole correlation functions and orientational relaxation times of interfacial solvent molecules. It is found that the width of the interfaces decreases with increase of concentration of the more polar component. The dipole vectors of the interfacial molecules tend to align parallel to the surfaces and this alignment is enhanced with increasing dipole moment of the fluid molecules. Also, the surface tension shows an increasing trend with increase of dipole moment of the molecules. The dynamical properties of the interfaces are found to be different from those of the corresponding bulk liquid phases. In general, the molecules at the interfaces are found to rotate and translate in the parallel direction at a somewhat faster rate than the bulk molecules. Also, on increase of concentration of the more polar component, the diffusion and orientational relaxation of interfacial molecules are found to show a weaker slowing down than those of the bulk molecules, which can be attributed to the preferential presence of the more polar component in the bulk liquid regions. The temporal behavior of the interfacial survival probabilities reveals a decrease of the survival times with increasing polarity, which can be attributed to a corresponding decrease in the interfacial thickness. Results are presented for both continuous and intermittent survival times and the origins of their differences are discussed. The free energy calculations reveal no minimum at the interfaces for adsorption of a charged solute, which shows that the ions would prefer to stay in the interior of the liquid phases, rather than at interfaces, for these model dipolar systems.  相似文献   

13.
The expansion and hydrodynamic properties of matrix are significant for expanded bed adsorption (EBA) processes. A series of new composite matrices CroCD-TuC are studied and estimated in an expanded bed. It is found that the heavier matrix is better suited for high operation fluid velocity than the lighters. Although the Richardson–Zaki equation can well correlate the bed voidage with fluid velocity for all CroCD-TuC matrices tested, the modifications are proposed to improve the accuracy of theoretical predictions of correlation parameters, including terminal settling velocity (Ut) and expansion index (n). Residence time distributions (RTDs) are determined, and the Bodenstein number (Bo) and axial dispersion coefficient (Dax) are employed to analyze the liquid mixing in the expanded bed. It is found for CroCD-TuC matrices, both parameters notably changed with the variation of fluid velocity and viscosity. Furthermore, Dax is an intuitive parameter estimating the bed stability on various operating conditions, and also a restriction on developing the matrix for high operation fluid velocity. The comparison of the hydrodynamic properties on different matrices reveals that CroCD-TuC 3 and CroCD-TuC 4 seem superior to other matrices in hydrodynamic properties, making them promising matrices for further use. The correlations as the functions of fluid velocity and viscosity have been established which may provide beneficial information for practical applications of CroCD-TuC matrices in EBA processes.  相似文献   

14.
A molecular dynamics study has been performed on a liquid film sheared between moving solid walls. Thermal phenomena that occur in the Couette-like flow were examined, including energy conversion from macroscopic flow energy to thermal energy, i.e., viscous heating in the macroscopic sense, and heat conduction from the liquid film to the solid wall via liquid-solid interfaces. Four types of crystal planes of fcc lattice were assumed for the surface of the solid wall. The jumps in velocity and temperature at the interface resulting from deteriorated transfer characteristics of thermal energy and momentum at the interface were observed. It was found that the transfer characteristics of thermal energy and momentum at the interfaces are greatly influenced by the types of crystal plane of the solid wall surface which contacts the liquid film. The mechanism by which such a molecular scale structure influences the energy transfer at the interface was examined by analyzing the molecular motion and its contribution to energy transfer at the solid-liquid interface.  相似文献   

15.
Polymer degradation is readily observed in flows where the extensional component surpasses the rotational component of the velocity gradient. This type of flow is conveniently obtained by pushing a liquid into a convergent channel across an orifice. Kinetics of chain scission is sensitive to subtle modification of the coil conformation, which in turn depends on the details of the pervading flow field. By changing the orifice diameter and the conical angle of the inlet, it is possible to modify the spatial distribution of the velocity gradient, and hence, the residence time of a fluid element in the high strain-rate region. Degradation yields, measured under -conditions in decalin by Gel Permeation Chromatography, showed a strong dependence on the fluid velocity at the orifice, but not on the magnitude of the strain-rate. This result is contrary to the common belief that assumes viscous friction, proportional to the strain-rate, is the determining factor for the scission rate of a bond under stress. Rather, experimental findings tend to indicate that the driving force for chain scission was provided by the energy accumulated in the coil during the flow-induced deformation process. The sharp propensity for mid-chain scission was maintained regardless of the nozzle geometry.Dedicated to Prof. W. R. Pechhold on the occasion of his 60th birthday  相似文献   

16.
将CTS接枝PVP后增加了分子间作用力(静电作用),使聚合物能够更加稳定的吸附碘分子,所以制备的CTS-PVP复合碘膜的抑菌性较CTS-PVP凝胶膜提高显著。  相似文献   

17.
Studies show that after acidizing operation of oil wells using the alkali/surfactant/polymer (ASP) flooding technology, the produced fluid is emulsified. Since the produced emulsion is stable, it affects the oil–water separation performance. In order to analyze the generation of stable emulsion in the produced fluid after acidizing an oil well, innovative separation experiments were carried out on real oil wells. During the experiments, solid particles in the middle layer of the emulsifying system in the produced fluid after acidizing ASP flooding were extracted and characterized. The generation of the stable emulsifying system in the produced fluid was studied through stability experiments and molecular dynamics simulations. The results showed that the synergistic effect of ferrous sulfide nanoparticles and surfactants was the fundamental reason for the strong emulsifying stability of the produced liquid after acidizing of the ternary composite system. The generation of ferrous sulfide solid particles mainly included two steps. First, sulfate reducing bacteria in injected water by ASP flooding reacted with sulfate in formation water to form hydrogen sulfide. Then, the hydrogen sulfide reacted with iron metal in oil wells and casing of wellbore to form ferrous sulfide particles. It was found that surfactants are adsorbed on the surface of ferrous sulfide nanoparticles. Subsequently, the control ability of surfactant on oil and water phases in the liquid film was enhanced. The performed analyses demonstrate that the adsorption of solid particles to the oil phase was enhanced, while the free motion of molecules in the oil phase at the liquid film position was weakened. The strength of the interfacial film between oil and water was further increased by the synergistic effect of ferrous sulfide nanoparticles and surfactant. The present study is expected to provide a guideline for a better understanding of the efficient treatment of produced fluids in ASP flooding.  相似文献   

18.
An array of microelectrodes covered in an electrolyte and energized by a traveling-wave potential produces net movement of the fluid. Arrays of platinum microelectrodes of two different characteristic sizes have been studied. For both sizes of arrays, at low voltages (<2 V pp) the electrolyte flow is in qualitative agreement with the linear theory of ac electroosmosis. At voltages above a threshold, the direction of fluid flow is reversed. The electrical impedance of the electrode-electrolyte system was measured after the experiments, and changes in the electrical properties of the electrolyte were observed. Measurements of the electrical current during pumping of the electrolyte are also reported. Transient behaviors in both electrical current and fluid velocity were observed. The Faradaic currents probably generate conductivity gradients in the liquid bulk, which in turn give rise to electrical forces. These effects are discussed in relation to the fluid flow observations.  相似文献   

19.
对淀积在玻璃衬底上厚度约60 nm的金银合金溅射薄膜进行硝酸腐蚀脱银处理, 得到纳米多孔金薄膜. 利用自建的波长检测型表面等离子体共振(SPR)传感装置研究了腐蚀时间对纳米多孔金薄膜SPR特性的影响, 结果发现纳米多孔金薄膜与水溶液接触后在400-900 nm光谱范围内不具有SPR效应, 而当薄膜置于空气中时会产生明显的传播等离子体共振吸收峰, 其共振波长随腐蚀时间增加逐渐红移. 纳米多孔金薄膜在空气气氛中的SPR效应使其能够用于原位监测气相分子在孔内的吸附, 还可对在液相中吸附的生化分子进行离位测试. 本文对L-谷胱甘肽、L-半胱氨酸、2-氨基乙硫醇三种含巯基的生化小分子在纳米多孔金薄膜内的吸附进行了离位分析, 结果表明与传统的致密金薄膜SPR芯片比较, 纳米多孔金薄膜对这些分子显示出更高的灵敏度和更低的检测下限, 这归功于多孔金的大比表面积使其能够吸附大量的生化小分子. 实验还对乙醇蒸气在纳米多孔金薄膜内的吸附进行了原位监测, 发现吸附平衡所用时间较长, 约为160 min.  相似文献   

20.
Cross-linked polymers have particular rheological responses during reprocessing, e. g. if the material is recycled, special processing conditions are required. Other virgin polymers can be used as a blending component to enhance rheological properties. Bi-layer film of EVA/LLDPE was produced on a blown film line and cross-linked by high-energy radiation. This film was ‘agglomerated’ then reprocessed in a twin-screw extruder with virgin LLDPE and blown into film. The miscibility of the blend components was then studied using a TA Instruments temperature modulated differential scanning calorimeter (TMDSC). It was found that the cross-linked EVA/LLDPE scrap and the LLDPE have a slight miscibility in the liquid state. A bigger portion of LLDPE was miscible (dissolved) in EVA in low LLDPE blends. A positive deviation in the heat capacity of the LLDPE component compared to the additivity rule indicated melting to be more reversible in the first heating cycle. This initial miscibility was attributed to being induced by high shear during processing. A smaller positive deviation also occurred in the second heating cycle. This was attributed to intrinsic miscibility. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号