首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dispersions of nanosized gold particles are synthesized in methyl hydroxyethyl-, carboxymethyl-, and hydroxy propylmethyl cellulose solutions by chemical reduction. Sizes of nanoparticles are determined using dynamic light scattering method. Ultrathin particle layers are prepared on the surfaces of polycrystalline gold films by self-organization technique. Characteristics of these layers and constituting particles are determined by scanning tunnel microscopy. It is shown that steps with heights of 0.7–4 nm and terraces are formed on nanoparticles. It is revealed that the height of a step depends to a greater extent on the chemical nature of employed reducer (tannin or formaldehyde) than on the nature of stabilizer (cellulose derivatives). Components of dispersion medium are selectively adsorbed on these steps.  相似文献   

2.
It is shown that gold nanoparticles can be produced using cellulose ethers, methylhydroxyethyl cellulose, and carboxymethyl cellulose as reducing agents that also play the role of nanoparticle stabilizers. Depending on the synthesis conditions, nanoparticle sizes vary in the range of 20–100 nm. The application of carboxymethyl cellulose as a stabilizer may give rise to the formation of a bimodal ensemble of nanoparticles with sizes of 4–5 and 30–40 nm. The differences in the mechanisms for the reduction and stabilization of gold nanoparticles in the presence of these cellulose derivatives are established by IR spectroscopy. The obtained colloidal dispersions of gold nanoparticles remain stable for a long time.  相似文献   

3.
A synthetic method of ordering hydrophilic gold nanoparticles into a close-packed two-dimensional array at a hexane-water interface and subsequent transferring of such structure onto a solid substrate is described. By repeating the transfer process, multilayered gold nanoparticle films are formed without need of linker molecules. Their surface enhanced Raman scattering (SERS) efficiencies are compared as a function of the number of layers. It is shown that both the number of layers and the particle size contribute to SERS phenomenon. Judging from the noticeable dependence of SERS efficiency on the nanometer scale architecture, the close-packed nanoparticle formation at an immiscible interface presents a facile route to the preparation of highly active and relatively clean SERS substrates by controlling both the particle size and the film thickness. Among the investigated samples, the gold nanoparticle film assembled with quintuple layers of 30 nm diameter particles showed the maximum SERS efficiency.  相似文献   

4.
A new procedure for the preparation of biocompatible gold nanoparticles using bioflavonoids: rutin, quercetin, and luteolin as reducing agents and stabilizers was proposed. On varying the bioflavonoid concentration, nanoparticles of different size are formed. By the combined use of spectroscopy and atomic force microscopy, the nanoparticle size was estimated (40–50 nm). Uniform and highly dispersed gold nanoparticles were obtained at Au: rutin ratios of 1: 1, 2: 1, and 4: 1 and Au: quercetin ratios of 2: 1 and 4: 1. The nanoparticle yield remains almost constant as the Au: rutin ratio varies over a broad range from 1: 1 to 12: 1. It was suggested that complete reduction of AuIII to Au0 with a large excess of Au is accompanied by extensive oxidation of bioflavonoid involving an intermediate oxidant formed in the system due to the high oxidative capacity of AuIII. For elucidating the catalytic role of bioflavonoids in the formation of gold nanoparticles, quantum chemical modeling of the process was performed.  相似文献   

5.
Gold nanoparticles were prepared in the presence of chitosan via reduction of HAuCl4 with sodium borohydride. The gold-chitosan nanocomposite was formed by adsorbing chitosan molecules onto the gold nanoparticle surfaces. The resulting gold nanoparticles were characterized by transmission electron microscopy and UV-vis spectroscopy. Morphology of gold-chitosan nanocomposite films was investigated by polarized optical microscopy. The morphology of chitosan crystal cast from the prepared nanocomposite was much different from that cast from chitosan solution due to the possible nucleation of gold nanoparticles. A branched-like structure or a cross-linked needle-like structure could be formed in nanocomposite films with different casting volumes.  相似文献   

6.
A novel open-tubular capillary electrochromatography (OTCEC) column was prepared by immobilizing dodecanethiol gold nanoparticles on prederivatised fused-silica capillary columns with sol-gel technology. 3-Mercaptopropyl-trimethoxysilane (MPTMS) was selected as sol-gel precursor to develop a sol-gel layer on the inner wall of the capillary, prior to assembly of dodecanethiol gold nanoparticles onto the generated sol-gel layer through specific interaction between the gold nanoparticles and surface terminating thiol groups. The electrochromatographic behaviour of the sol-gel gold nanoparticle capillary was compared with a gold nanoparticle capillary prepared via MPTMS surface functionalisation, through variation of the percentage of the organic modifier, pH, and separation voltage. Efficient separation for a "reversed-phase" test mixture of thiourea, naphthalene, and biphenyl and for selected polycyclic aromatic hydrocarbons (PAHs) was obtained on the sol-gel based gold nanoparticle capillaries. OTCEC separations of three selected drug substances (propiophenone, benzoin, and warfarin) were also demonstrated. Scanning electron microscopy was used for the characterization of the sol-gel gold nanoparticle capillary surface. The results confirm that dodecanethiol gold nanoparticles, bound on the sol-gel-based inner layer of fused-silica capillary, can provide sufficient solute-bonded phase interactions for OTCEC with reproducible retention as well as characteristic reversed-phase behaviour.  相似文献   

7.
We present the results of studying the structure of gold nanoparticles synthesized on the silicon surface by two techniques: pulsed laser ablation and magnetron sputtering. The surface morphology is examined by scanning electron microscopy. The structure of the obtained gold nanoparticles is analyzed by transmission electron microscopy and electron diffraction. It is shown that nanoparticle sizes and crystal structures can be controlled by their thermal annealing. Mechanisms occurring during annealing of thin gold films and also their effect on the formation of nanoparticles with different structures are investigated.  相似文献   

8.
Stable colloidal solutions of gold nanoparticles surface-derivatized with a thiol monolayer have been prepared using two-phase (water–nitrobenzene) reduction of AuCl4 by sodium borohydride in the presence of 2-mercapto-3-n-octylthiophene (MOT). This kind of surface-functionalized gold nanoparticles can be easily incorporated into the poly(3-octylthiophene) (POT) films on electrode in the process of electrochemical polymerization leading to POT–gold nanoparticle (POT–Au) composite films. Scanning probe microscopy (SPM) and X-ray photoelectric spectroscopy (XPS) have been employed to characterize the surface-derivatized particles and the resulting films. The method of incorporation of nanoparticles into polymer by surface-derivatization and in situ polymerization can also be employed to prepare many other polymer–nanoparticle compostie materials.  相似文献   

9.
Deposition of nanoparticles on the surface of a variety of materials is a subject of great interest due to their potential applications in electronic devices, sensing, catalysis and bio-medical sciences. In this context, we have explored and compared various methodologies to generate gold and silver nanoparticles on the surface of cellulose fibers. It was found that boiling of the cellulose fibers in alkaline solution of gold and silver salts led to the formation and immobilization of gold and silver nanoparticles. However, in case of lecithin treated and thiol-modified cellulose fibers, high temperature was not essentially required for the formation and deposition of nanoparticles on cellulose substrate. In both these cases, fairly uniform metal nanoparticles were obtained in good yields (~43 wt% gold loading in case of thiol modified cellulose fibers) at room temperature. Borohydride-reduction method resulted in relatively lower loading (~22 wt%) with a wide size distribution of gold and silver nanoparticles on cellulose fibers. All these nanoparticle–cellulose composites were thoroughly characterized using scanning electron microscopy, energy dispersive X-ray, Fourier transform infrared spectroscopy, UV–visible spectroscopy, and elemental analyzer. Thiol modified cellulose–gold nanoparticle composites served as active catalysts in the reduction of 4-nitrophenol into 4-aminophenol.  相似文献   

10.
Spherical gold nanoparticles and flat gold films are prepared in which yeast iso-1-cytochrome c (Cyt c) is covalently bound to the gold surface by a thiol group in the cystein 102 residue. Upon exposure to solutions of different pH, bound Cyt c unfolds at low pH and refolds at high pH. This conformational change causes measurable shifts in the color of the coated nanoparticle solutions detected by UV-VIS absorption spectroscopy and in the refractive index (RI) of the flat gold films detected by surface plasmon resonance (SPR) spectroscopy. Both experiments demonstrate the same trend with pH, suggesting the use of protein-covered gold nanoparticles as a simple colorimetric sensor for conformational change.  相似文献   

11.
A new simple concept for the stoichiometrical functionalization of nanoparticles based on free radical polymerization of vinyl protected nanoparticles is presented. To demonstrate this concept 2-bis(4-vinylphenyl)disulfane was synthesized and used in the synthesis of gold nanoparticles, leading to 4-vinylthiophenol functionalized nanoparticles. Simple free radical polymerization of these particles initiated by 4,4'-azobis-(4-cyanopentanoic acid) delivered nanoparticles with a single carboxyl group. These monofunctionalized gold nanoparticles were utilized for chemical preparation of gold nanoparticle dimers as well as for construction of gold nanoparticle arrays via binding to polyallylamine.  相似文献   

12.
A novel method for the preparation of thin films of Ag nanoparticles is reported. Using mercaptoacetic acid as the stabilizing agent, AgI nanoparticles were prepared in aqueous solution. And based on electrostatic interactions, the thiol-passivated AgI nanoparticles were assembled in a self-assembled film by alternative deposition with a cationic polyelectrolyte. Then the AgI nanoparticles in the composite film were reduced by NaBH(4), which resulted in the formation of a thin film of Ag nanoparticles. UV-visible spectra and X-ray photoelectron spectroscopy data confirmed the transformation from AgI to Ag. Atomic force microscopy (AFM) showed that the formed Ag nanoparticles distributed on the film homogeneously. Surface-enhanced Raman spectroscopy (SERS) measurement indicated that the prepared thin films could be used as effective SERS substrates. The reduction process was also carried out by UV light at selective surface regions, which resulted in the formation of patterned nanoparticle arrays.  相似文献   

13.
本文以高能量的超声波作用于溶胶/疏水溶剂两相体系, 使溶胶相中的纳米颗粒先被加速吸附到乳液油滴的小表面. 随着乳液油滴向上转移, 在界面处破乳, 纳米颗粒就被释放到水/油界面上来, 形成自组装纳米薄膜. 尽管这种组装机制尚不完全清楚(如超声波是否确实如预期那样可以提高纳米粒子的动能), 但这种方法不需要预先对纳米粒子表面疏水修饰, 也不需向体系中添加表面活性有机小分子或电解质等诱导剂, 可快速有效制备表面“洁净”的纳米粒子薄膜, 并可用作高活性SERS基底.  相似文献   

14.
A systematic study of the interfacial activity of polymer-coated gold nanoparticles was performed with the use of a computer-controlled four-roll mill. The nanoparticle locality within the polymeric domains (bulk or interface) was controlled by means of a mixture of polymeric ligands grafted to the gold nanoparticle core. The bulk polymers were polybutadiene (PBd) and polydimethylsiloxane (PDMS). Monoterminated PDMS and PBd ligands were synthesized on the basis of the esterification of reactive groups (such as hydroxyl or amino groups) with lipoic acid anhydride. The formation of polymer-coated nanoparticles using these lipoic acid-functionalized polymers was confirmed via transmission electron microscopy (TEM), and their interfacial activity was manifested as a reduction of the interfacial tension and in the enhanced stability of thin films (as seen via the inhibition of coalescence). The nanoparticles showed an equal, if not superior, ability to reduce the interfacial tension when compared to previous studies on the effect of insoluble surfactants; however, these particles proved not to be as effective at inhibiting coalescence as their surfactant counterpart. We suggest that this effect may be caused by an increase in the attractive van der Waals forces created by the presence of metal-core nanoparticles. Experimental measurements using the four-roll mill allow us to explore the relationship between nanoparticle concentration at the interface and interfacial tension. In particular, we have found evidence that the interface concentration can be increased relative to the equilibrium value achieved by diffusion alone, and thus the interfacial tension can be systematically reduced if the interfacial area is increased temporarily via drop deformation or breakup followed by recoalescence.  相似文献   

15.
Electroless gold island thin films are formed by galvanic replacement of silver reduced onto a tin-sensitized silica surface. A novel approach to create nanoparticle ensembles with tunable particle dimensions, densities, and distributions by thermal transformation of these electroless gold island thin films is presented. Deposition time is adjusted to produce monomodal ensembles of nanoparticles from 9.5 +/- 4.0 to 266 +/- 22 nm at densities from 2.6 x 1011 to 4.3 x 108 particles cm-2. Scanning electron microscopy and atomic force microscopy reveal electroless gold island film structures as well as nanoparticle dimensions, densities, and distributions obtained by watershed analysis. Transmission UV-vis spectroscopy reveals photoluminescent features that suggest ultrathin EL films may be smoother than sputtered Au films. X-ray diffraction shows Au films have predominantly (111) orientation.  相似文献   

16.
Simultaneous nucleation of gold nanoparticles and polymerization of tyramine has been carried out at an immiscible electrolyte interface. By transferring the gold ion of tetraoctylammoniumtetracloroaurate (TOAAuCl(4)) from the organic to the aqueous phase, a fast homogeneous electron transfer from the tyramine monomer reduces the gold ion. Electropolymerization then proceeds, and gold nanoparticles form. The newly formed nanoparticles act as nucleation sites for the deposition of the oligomers/polymer (and possibly vice versa). This results in gold nanoparticles stabilized in a polytyramine matrix. The size of the nanoparticles is controlled by the concentration of oligomers/polymer in solution. The polymer nanoparticle composite film was analyzed with TEM, XPS, and AFM.  相似文献   

17.
In this paper cyclic voltammetry was used for the synthesis of linear array spherical gold nanoparticles on the surface of glassy carbon electrode using methionine as a stable reagent. The methionine-gold nanoparticles on the surface of glassy electrode were obtained. The methionine-gold nanoparticles were characterized by cyclic voltammetry, scanning electron microscopy, energy dispersive spectrometry and powder X-ray diffraction. Electrochemical behavior of methionine at methionine-gold nanoparticle modified electrode was investigated. It was demonstrated that the methionine-gold nanoparticles can catalyze electrochemical transformations of methionine.  相似文献   

18.
The breath figure method was used to prepare dodecanethiol‐capped gold nanoparticle macroporous structures with pore diameters from 1.7 to 3.5 μm on an air/water interface. A two‐step procedure is proposed for the fabrication of these macroporous structures, by forming a surfactant monolayer on water, and drop‐casting a gold nanoparticle dispersion in chloroform onto the surfactant monolayer. The self‐assembled films are easily transferred from the water surface onto different substrates and were characterized by TEM, SEM, and AFM. Ordered honeycomb structures with different pore arrays (perforated monolayer films, hexagonal networks and alveoli‐like porous films) were obtained. The change in morphology is concentration dependent, and deformed structures with elliptic honeycomb networks are also observed. In addition, honeycomb films using gold nanoparticles stabilized by a weakly bound ligand (dioctadecyldimethylammonium chloride) were formed by the same technique. These films have potential as substrates for surface‐enhanced Raman spectroscopy.  相似文献   

19.
Zhang Q  Xu JJ  Liu Y  Chen HY 《Lab on a chip》2008,8(2):352-357
We presented a simple approach for in-situ synthesis of poly(dimethylsiloxane) (PDMS)-gold nanoparticles composite film based on the special characteristics of PDMS itself. It is an environmentally safe synthesis method without the requirement of additional reducing/stabilizing agents. The region where the resulting gold nanoparticles distribute (in the matrix or on the surface of the polymer) and the size of the nanoparticles, as well as the colour of the free-standing films, can be simply controlled by adjusting the ratio of curing agent and the PDMS monomer. The chemical and optical properties of these composite films were studied. Using such a method, gold nanoparticle micropatterns on PDMS surfaces can be performed. And based on the gold nanoparticles micropattern, further modification with antibodies, antigens, enzymes and other biomolecules can be achieved. To verify this ability, an immobilized glucose oxidase (GOx) reactor in microchannels was built and its performance was studied. The experiments have shown that the resulting composite film may have a lot of potential merits in protein immobilization, immunoassays and other biochemical analysis on PDMS microchips.  相似文献   

20.
This article presents a synthesis method for nanoparticle-cored dendrimers (NCDs), which have dendritic architectures around a monolayer-protected gold nanoparticle. The synthesis method is based on a strategy in which the synthesis of monolayer-protected nanoparticles is followed by adding dendrons on functionalized nanoparticles by a single coupling reaction. NMR spectroscopy, IR spectroscopy, and thermogravimetric analysis (TGA) characterizations confirmed the successful coupling reaction between dendrons with different generations ([G1], [G2], and [G3]) and COOH-functionalized nanoparticles ( approximately Au201L71). The dendrimer wedge density also could be controlled by reacting nanoparticles having different loading of COOH groups ( approximately 60 and approximately 10% COOH of the 71 ligands per gold nanoparticle) with functionalized dendrons. Transmission electron microscope results showed that this synthesis strategy maintains the average size of the nanoparticle core during dendron coupling reactions. This control over the composition and core size makes the systematic study of NCDs with different generations possible. The chemical stability of NCDs was found to be affected by dendron generation around the nanoparticle core. The current-potential response of NCD films on microelectrode arrays exhibited better electrical conductivity for NCDs with lower dendron generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号