首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although Brust-Schiffrin two-phase synthesis is a popular method for synthesizing ligand-protected metal nanoparticles with an average size of less than 5 nm, the details on how the reactions can be controlled from a mechanistic point of view are still unclear, therefore hindering efforts to synthesize monodisperse metal nanoparticles. It was recently discovered that this method is basically an inverse-micelle-based synthesis (Li, Y.; Zaluzhna, O.; Xu, B.; Gao, Y.; Modest, J. M.; Tong, Y. Y. J. J. Am. Chem. Soc.2011, 133, 2092). In this letter, the critical role of water and the structure of inverse micelles in typical synthesis of gold nanoparticles were further investigated. We found that (1) water encapsulated in the inverse micelles of [TOA](+) that also hosted metal ions formed a hydrophilic microenvironment that acted as a reaction-enabling proton-accepting medium for the thiol protons (RS-H) and (2) not only the presence but also the amount of water in the reaction medium has a profound effect on the Au(I) precursor species (a pure [TOA][AuX(2)] complex or a mixture of a [TOA][AuX(2)] complex and polymeric [Au(I)SR](n) species), the reduction of Au(III) by thiols, and the formation of uniform small metal nanoparticles. A quantitative analysis of the (1)H NMR of the encapsulated water enabled an estimation of the size and composition of the involved inverse micelles.  相似文献   

2.
We report the temperature, pH, glucose concentration, NaCl concentration, and operating atmosphere dependence of the power output of a compartment-less miniature glucose-O(2) biofuel cell, comprised only of two bioelectrocatalyst-coated carbon fibers, each of 7 micro m diameter and 2 cm length (Mano, N.; Mao, F.; Heller, A. J. Am. Chem. Soc. 2002, 124, 12962). The bioelectrocatalyst of the anode consists of glucose oxidase from Aspergillus niger electrically "wired" by polymer I, having a redox potential of -0.19 V vs Ag/AgCl. That of the cathode consists of bilirubin oxidase from Trachyderma tsunodae "wired" by polymer II having a redox potential of +0.36 V vs Ag/AgCl (Mano, N.; Kim, H.-H.; Zhang, Y.; Heller, A. J. Am. Chem. Soc. 2002, 124, 6480. Mano, N.; Kim, H.-H.; Heller, A. J. Phys. Chem. B 2002, 106, 8842). Implantation of the fibers in the grape leads to an operating biofuel cell producing 2.4 micro W at 0.52 V.  相似文献   

3.
Density functional theory has been used to calculate H-C and M-C bond dissociation enthalpies in order to evaluate the feasibility of correlating relative M-C bond enthalpies Delta H(M-C)rel with H-C bond enthalpies Delta H(H-C) via computational methods. This approach has been tested against two experimental correlations: a study of (a) Rh(H)(R)(Tp')(CNCH2CMe3) [R = hydrocarbyl, Tp' = HB(3,5-dimethylpyrazolyl)3] (Wick, D. D.; Jones, W. D. Organometallics 1999, 18, 495) and (b) Ti(R)(silox)2(NHSit-Bu3) (silox = OSit-Bu3) (Bennett, J. L.; Wolczanski, P. T. J. Am. Chem. Soc. 1997, 119, 10696). We show that the observation that M-C bond enthalpies increase more rapidly with different substituents than H-C bond enthalpies is reproduced by theory. Quantitative slopes of the correlation lines are reproduced within 4% of the experimental values with a B3PW91 functional and with very similar correlation coefficients. Absolute bond enthalpies are reproduced within 6% for H-C bonds, and relative bond enthalpies for M-C bonds are reproduced within 30 kJ mol(-1) for Rh-C bonds and within 19 kJ mol(-1) for Ti-C bonds. Values are also calculated with the BP86 functional.  相似文献   

4.
The molecular structures of the three heterodecaboranes arachno-6,9-C2B8H14, arachno-6,9-N2B8H12, and arachno-6,9-Se2B8H10 have been determined by ab initio MO theory. In addition, the structure of arachno-6,9-C2B8H14 was experimentally determined using gas-phase electron diffraction (GED). The accuracy of all four of these structures has been confirmed by the good agreement of the (11)B chemical shifts calculated at the GIAO-MP2 level with the experimental values. A comparison of the GIAO-HF and GIAO-MP2 methods shows that for these heteroborane clusters, electron correlation effects on the computed delta((11)B) values are quite substantial and that it is necessary to go beyond the HF level in the NMR computation.  相似文献   

5.
王振  张静 《结构化学》2011,30(10):1367-1374
Quantum-chemical calculations on some derivatives of [n]-prismanes expanded by ethynyl or ethenyl groups have been performed using density functional theory (DFT) method.Their geometric structures,electronic structures,vertical ionization potentials and vertical electron affinities have been obtained at the B3LYP/6-31G** level of theory.Meanwhile,the total strain energy has been investigated in detail and compared with [n]-prismane and other derivatives.The present paper has also computed the enthalpies of formation for different isomers so as to evaluate their thermal stabilities.  相似文献   

6.
Oleamide is an interesting compound, which shows various pharmacological activities including the inhibitory effect of gap junction formation. Recently, the studies of the gap junction have been some of the hot topics in biology and its inhibitors have become more useful tools [Cravatt, B. F.; Garcia, O. P.; Siuzdak, G.; Gilula, N. B.; Henriksen, S. J.; Boger, D. L.; Lerner, R. A. Science1995, 268, 1506-1509; Cravatt, B. F.; Lerner, R. A.; Boger, D. L. J. Am. Chem. Soc.1996, 118, 580-590; Guan, X; Cravatt, B. F.; Ehring, G. R.; Hall, J. E.; Boger, D. L.; Lerner, R. A.; Gilula, N. B. J. Cell Biol.1997, 139, 1785-1792; Boger, D. L.; Patterson, J. E.; Guan, X.; Cravatt, B. F.; Lerner, R. A.; Gilula, N. B. Proc. Natl. Acad. Sci. U.S.A.1998, 95, 4810-4815; Ito, A.; Morita, N.; Miura, D.; Koma, Y.; Kataoka, T. R.; Yamasaki, H.; Kitamura, Y.; Kita, Y.; Nojima, H. Carcinogenesis2004, 25, 2015-2022]. However, many reports suggest that the functionalizations of oleamide to retain its biological activity were difficult [Boger, D. L.; Patterson, J. E.; Guan, X.; Cravatt, B. F.; Lerner, R. A.; Gilula, N. B. Proc. Natl. Acad. Sci. U.S.A.1998, 95, 4810-4815; Ito, A.; Morita, N.; Miura, D.; Koma, Y.; Kataoka, T. R.; Yamasaki, H.; Kitamura, Y.; Kita, Y.; Nojima, H. Carcinogenesis2004, 25, 2015-2022]. The synthesis of the functionalized oleamide derivatives, whose biological activity is not blocked, has become attractive in both the biological and chemical fields.Herein, by linking the fluorophore to the oleamide by alkyl chains, we synthesized the fluorescently tagged oleamide whose biological feature is similar to that of oleamide. Moreover, we also synthesized other bioactive derivatives tagged by other groups such as the sugars and biotin via alkyl chain linkers.  相似文献   

7.
陈珊  赵娟  陈功  黄鹏程 《高分子学报》2011,(12):1368-1373
以实验室自制的十硼烷和1,4-二乙酰氧基-2-丁炔为原料,经过一系列反应合成了单体1,2-二羟甲基碳硼烷,并与己二酰氯经缩合反应合成了羟基封端的聚己二酸-1,2-双(羟甲基)碳硼烷酯,通过红外光谱,1H-核磁共振,11B-核磁共振和元素分析等手段对单体和聚合物的结构和纯度进行了分析;以合成的聚酯为甲组分,分别以脂肪族缩...  相似文献   

8.
Iron(III)-hydroperoxo, [Por(CysS)Fe(III)-OOH](-), a key species in the catalytic cycle of cytochrome P450, was recently identified by EPR/ENDOR spectroscopies (Davydov, R.; Makris, T. M.; Kofman, V.; Werst, D. E.; Sligar, S. G.; Hoffman, B. M. J. Am. Chem. Soc. 2001, 123, 1403-1415). It constitutes the last station of the preparative steps of the enzyme before oxidation of an organic compound and is implicated as the second oxidant capable of olefin epoxidation (Vaz, A. D. N.; McGinnity, D. F.; Coon, M. J. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 3555-3560), in addition to the penultimate active species, Compound I (Groves, J. T.; Han, Y.-Z. In Cytochrome P450: Structure, Mechanism and Biochemistry, 2nd ed.; Ortiz de Montellano, P. R., Ed.; Plenum Press: New York, 1995; pp 3-48). In response, we present a density functional study of a model species and its ethylene epoxidation pathways. The study characterizes a variety of properties of iron(III)-hydroperoxo, such as the O-O bonding, the Fe-S bonding, Fe-O and Fe-S stretching frequencies, its electron attachment, and ionization energies. Wherever possible these properties are compared with those of Compound I. The proton affinities for protonation on the proximal and distal oxygen atoms of iron(III)-hydroperoxo, and the effect of the thiolate ligand thereof, are determined. In accordance with previous results (Harris, D. L.; Loew, G. H. J. Am. Chem. Soc. 1998, 120, 8941-8948), iron(III)-hydroperoxo is a strong base (as compared with water), and its distal protonation leads to a barrier-free formation of Compound I. The origins of this barrier-free process are discussed using a valence bond approach. It is shown that the presence of the thiolate is essential for this process, in line with the "push effect" deduced by experimentalists (Sono, M.; Roach, M. P.; Coulter, E. D.; Dawson, J. H. Chem. Rev. 1996, 96, 2841-2887). Finally, four epoxidation pathways of iron(III)-hydroxperoxo are located, in which the species transfers oxygen to ethylene either from the proximal or from the distal sites, in both concerted and stepwise manners. The barriers for the four mechanisms are 37-53 kcal/mol, in comparison with 14 kcal/mol for epoxidation by Compound I. It is therefore concluded that iron(III)-hydroperoxo, as such, cannot be a second oxidant, in line with its significant basicity and poor electron-accepting capability. Possible versions of a second oxidant are discussed.  相似文献   

9.
Quantum molecular engineering has been performed to determine the second-order nonlinear optical (NLO) properties in different halo complexes of decaborane (B(10)H(14)) and their derivatives using the density functional theory (DFT) method. These decaborane halo complexes of X(-)@B(10)H(14) (X = F, Cl, Br, and I) are found to possess noncovalent charge transfer interactions. The static polarizability (α(0)) and first hyperpolarizability (β(0)) among these complexes increase by moving down the group from F to I, partly due to the increase in size of their anionic radii and the decrease in their electron affinities. A two-level approximation has been employed to investigate the origin of β(0) values in these halo complexes, which show very consistent results with those by the finite-field method. Furthermore, in the same line, two experimentally existing complexes, I(-)@B(10)H(14) and I(-)@2,4-I(2)B(10)H(12), are found to have considerably large β(0) values of 2859 and 3092 a.u., respectively, which are about three times larger than a prototypical second-order NLO molecule of p-nitroaniline, as reported by Soscun et al. [Int. J. Quantum Chem.2006, 106, 1130-1137]. Besides this, the special effects of solvent, counterion, and bottom substitutions have also been investigated. Interestingly, 2,4-alkali metal-substituted decaborane iodide complexes show remarkably large second-order NLO response with β(0) amplitude as large as 62436 a.u. for I(-)@2,4-K(2)B(10)H(12) complex, which are explained in terms of their transition energies, frontier molecular orbitals and electron density difference plots. Thus, the present investigation provides several new comparative insights into the second-order NLO properties of halo complexes of decaborane, which possess not only large first hyperpolarizabilities, but also high tunability to get a robustly large second-order NLO response by alkali metal substitution effects.  相似文献   

10.
While the recognition of cyanuric acid (CA) by melamine (M) and their derivatives has been known to occur in both water and organic solvents for some time, analysis of CA/M assembly in water has not been reported (Ranganathan, A.; Pedireddi, V. R.; Rao, C. N. R. J. Am. Chem. Soc.1999, 121, 1752-1753; Mathias, J. P.; Simanek, E. E.; Seto, C. T.; Whitesides, G. M. Macromol. Symp.1994, 77, 157-166; Zerkowski, J. A.; MacDonald, J. C.; Seto, C. T.; Wierda, D. A.; Whitesides, G. M. J. Am. Chem. Soc.1994, 116, 2382-2391; Mathias, J. P.; Seto, C. T.; Whitesides, G. M. Polym. Prepr.1993, 34, 92-93; Seto, C. T.; Whitesides, G. M. J. Am. Chem. Soc.1993, 115, 905-916; Zerkowski, J. A.; Seto, C. T.; Whitesides, G. M. J. Am. Chem. Soc.1992, 114, 5473-5475; Seto, C. T.; Whitesides, G. M. J. Am. Chem. Soc.1990, 112, 6409-6411; Wang, Y.; Wei, B.; Wang, Q. J. Chem. Cryst.1990, 20, 79-84; ten Cate, M. G. J.; Huskens, J.; Crego-Calama, M.; Reinhoudt, D. N. Chem.-Eur. J.2004, 10, 3632-3639). We have examined assembly of CA/M, as well as assembly of soluble trivalent CA and M derivatives (TCA/TM), in aqueous solvent, using a combination of solution phase NMR, isothermal titration and differential scanning calorimetry (ITC/DSC), cryo-transmission electron microscopy (cryo-TEM), and synthetic chemistry. While the parent heterocycles coprecipitate in water, the trivalent system displays more controlled and cooperative assembly that occurs at lower concentrations than the parent and yields a stable nanoparticle suspension. The assembly of both parent and trivalent systems is rigorously 1:1 and proceeds as an exothermic, proton-transfer coupled process in neutral pH water. Though CA and M are considered canonical hydrogen-bonding motifs in organic solvents, we find that their assembly in water is driven in large part by enthalpically favorable surface-area burial, similar to what is observed with nucleic acid recognition. There are currently few synthetic systems capable of robust molecular recognition in water that do not rely on native recognition motifs, possibly due to an incomplete understanding of recognition processes in water. This study establishes a detailed conceptual framework for considering CA/M heterocycle recognition in water which enables the future design of molecular recognition systems that function in water.  相似文献   

11.
Wang X  Li S  Jiang Y 《Inorganic chemistry》2004,43(20):6479-6489
The mechanism of H(2)O(2) dismutation catalyzed by the dibenzotetraaza[14]annulene-Fe(III) complex ([Fe(C(24)H(22)N(4)O(4))](+)) which was recently reported (Paschke, J.; Kirsch, M.; Korth, H. G.; de Groot, H.; Sustmann, R. J. Am. Chem. Soc. 2001, 123, 11099) has been investigated by density functional theory using the B3LYP hybrid functional. The quartet potential energy profile of the catalytic reaction has been explored. In the whole catalytic cycle, the rate-determining step is found to be the O-O bond homolytic cleavage, without the assistance of solvent molecules in the second coordination shell. The calculated free energy barrier for this step is 10.8 kcal/mol, which is in reasonable agreement with the experimental facts. The calculations also show that the hydroxyl and hydroperoxyl radicals may be generated in the reaction processes, but they can be efficiently quenched in strongly exothermic steps. This study provides a satisfactory explanation to the observed efficiency of the H(2)O(2) dismutation catalyzed by this complex.  相似文献   

12.
The reactions of the CH radical with several alkanes were studied, at room temperature, in a low-pressure fast-flow reactor. CH(X2Pi, v = 0) radicals were obtained from the reaction of CHBr(3) with potassium atoms. The overall rate constants at 300 K are (0.76 +/- 0.20) x 10(-10) [Fleurat-Lessard, P.; Rayez, J. C.; Bergeat, A.; Loison, J. C. Chem. Phys. 2002, 279, 87],1 (1.60 +/- 0.60) x 10(-10)[Galland, N.; Caralp, F.; Hannachi, Y.; Bergeat, A.; Loison, J.-C. J. Phys. Chem. A 2003, 107, 5419],2 (2.20 +/- 0.80) x 10(-10), (2.80 +/- 0.80) x 10(-10), (3.20 +/- 0.80) x 10(-10), (3.30 +/- 0.60) x 10(-10), and (3.60 +/- 0.80) x 10(-10) cm3 molecule(-1) s(-1), (errors refer to +/-2sigma) for methane, ethane, propane, n-butane, n-pentane, neo-pentane, and n-hexane respectively. The experimental overall rate constants correspond to those obtained using a simple classical capture theory. Absolute atomic hydrogen production was determined by V.U.V. resonance fluorescence, with H production from the CH + CH4 reaction being used as a reference. Observed H branching ratios were for CH4, 1.00[Fleurat-Lessard, P.; Rayez, J. C.; Bergeat, A.; Loison, J. C. Chem. Phys. 2002, 279, 87];1 C(2)H(6), 0.22 +/- 0.08 [Galland, N.; Caralp, F.; Hannachi, Y.; Bergeat, A.; Loison, J.-C. J. Phys. Chem. A 2003, 107, 5419];2 C(3)H(8), 0.19 +/- 0.07; C(4)H(10) (n-butane), 0.14 +/- 0.06; C(5)H(12) (n-pentane), 0.52 +/- 0.08; C(5)H(12) (neo-pentane), 0.51 +/- 0.08; C(5)H(12) (iso-pentane), 0.12 +/- 0.06; C(6)H(14) (n-hexane), 0.06 +/- 0.04.  相似文献   

13.
Antimicrobial alpha-helical alpha-peptides are part of the host-defense mechanism of multicellular organisms and could find therapeutic use against bacteria that are resistant to conventional antibiotics. Recent work from Hamuro et al. has shown that oligomers of beta-amino acids ("beta-peptides") that can adopt an amphiphilic helix defined by 14-membered ring hydrogen bonds ("14-helix") are active against Escherichia coli [Hamuro, Y.; Schneider, J. P.; DeGrado, W. F. J. Am. Chem. Soc. 1999, 121, 12200-12201]. We have created two series of cationic 9- and 10-residue amphiphilic beta-peptides to probe the effect of 14-helix stability on antimicrobial and hemolytic activity. 14-Helix stability within these series is modulated by varying the proportions of rigid trans-2-aminocyclohexanecarboxylic acid (ACHC) residues and flexible acyclic residues. We have previously shown that a high proportion of ACHC residues in short beta-peptides encourages 14-helical structure in aqueous solution [Appella, D. H.; Barchi, J. J.; Durell, S. R.; Gellman, S. H. J. Am. Chem. Soc. 1999, 121, 2309-2310]. Circular dichroism of the beta-peptides described here reveals a broad range of 14-helix population in aqueous buffer, but this variation in helical propensity does not lead to significant changes in antibiotic activity against a set of four bacteria. Several of the 9-mers display antibiotic activity comparable to that of a synthetic magainin derivative. Among these 9-mers, hemolytic activity increases slightly with increasing 14-helical propensity, but all of the 9-mers are less hemolytic than the magainin derivative. Previous studies with conventional peptides (alpha-amino acid residues) have provided conflicting evidence on the relationship between helical propensity and antimicrobial activity. This uncertainty has arisen because alpha-helix stability can be varied to only a limited extent among linear alpha-peptides without modifying parameters important for antimicrobial activity (e.g., net charge or hydrophobicity); a much greater range of helical stability is accessible with beta-peptides. For example, it is very rare for a linear alpha-peptide to display significant alpha-helix formation in aqueous solution and manifest antibacterial activity, while the linear beta-peptides described here range from fully unfolded to very highly folded in aqueous solution. This study shows that beta-peptides can be unique tools for analyzing relationships between conformational stability and biological activity.  相似文献   

14.
The correlation consistent composite approach (ccCA) is a model chemistry that has been shown to accurately compute gas-phase enthalpies of formation for alkali and alkaline earth metal oxides and hydroxides (Ho, D. S.; DeYonker, N. J.; Wilson, A. K.; Cundari, T. R. J. Phys. Chem. A 2006, 110, 9767).The ccCA results contrast to more widely used model chemistries where calculated enthalpies of formation for such species can be in error by up to 90 kcal mol-1. In this study, we have applied ccCA to a more general set of 42 s-block molecules and compared the ccCA DeltaHf values to values obtained using the G3 and G3B model chemistries. Included in this training set are water complexes such as Na(H2O)n+ where n = 1 - 4, dimers and trimers of ionic compounds such as (LiCl)2 and (LiCl)3, and the largest ccCA computation to date: Be(acac)2, BeC10H14O4. Problems with the G3 model chemistries seem to be isolated to metal-oxygen bonded systems and Be-containing systems, as G3 and G3B still perform quite well with a 2.7 and 2.6 kcal mol-1 mean absolute deviation (MAD), respectively, for gas-phase enthalpies of formation. The MAD of the ccCA is only 2.2 kcal mol-1 for enthalpies of formation (DeltaHf) for all compounds studied herein. While this MAD is roughly double that found for a ccCA study of >350 main group (i.e., p-block) compounds, it is commensurate with typical experimental uncertainties for s-block complexes. Some molecules where G3/G3B and ccCA computed DeltaHf values deviate significantly from experiment, such as (LiCl)3, NaCN, and MgF, are inviting candidates for new experimental and high-level theoretical studies.  相似文献   

15.
Qualitative valence bond formulations by Hiberty and co-workers (Hiberty, P. C.; Megret, C.; Song, L.; Wu, W.; Shaik, S. J. Am. Chem. Soc. 2006, 128, 2836) of mechanisms for the radical exchange reactions H*+F:H-->H:F+H* and F*+H:F-->F:H+F* are compared to a previously published formulation of the generalized radical exchange reaction X*+R:Y-->X:R+Y*. The former formulation uses covalent-ionic VB complexes, and the latter formulation, which is more general, involves the formation of reactant-like and product-like complexes at intermediate stages along the reaction coordinate.  相似文献   

16.
Invar合金是一类在正常温度范围内具有膨胀性随温度变化很小甚至不变之特性的合金材料,对IllV。合金有多种模型解释,其中焰和热容是最重要的参数之一[‘,’]在稀土IllV。I合金中,只有L贝;。B的低温(T<300K)热容作过报导问.作为系统研究稀土*v。r合金工作、‘」的部分内容,本文报导含稀土InV。I合金REZFe14B和REFe12。V。的热化学性质研究结果,以便为选择最佳稀土Invar合金提供科学依据.1实验1·1合金制备所制备的合金为Y2F214B、SmFIDVZ、YFe10VZ、L22Fe14B、C42Fe14B、NdZFe14B、Sin。Fe。。B和NdFel…  相似文献   

17.
Enthalpies of solution in water, H sol o , and enthalpies of sublimation, H sub o , were determined experimentally for a number of crystalline derivatives of adenine: 6,8,9-trimethyladenine; 6,9-dimethyl-8-ethyladenine; 6,9-dimethyl-8-propyladenine; 6,9-dimethyl-8-butyladenine; 8,9-dimethyl-adenine and 9-methyl-8-ethyladenine. Standard enthalpies of hydration, H hydr o , derived from these data were calculated. The latter were discussed together with the values for variously alkylated adenines, determined previously. The data obtained show that the dependence of enthalpy of hydration on the number of methylene groups added upon substitution with 8-n-alkyl groups of 9-methyladenine and 6,9-dimethyladenine is nonlinear.  相似文献   

18.
The intramolecular mechanism we earlier proposed [Alagona, G.; Desmeules, P.; Ghio, C.; Kollman, P. A. J Am Chem Soc 1984, 106, 3623] for the second proton transfer of the reaction catalyzed by triosephosphate isomerase (TIM) is examined ab initio at the HF and MP2/6-31+G** levels in vacuo for two conformers of the enediolate phosphate (ENEP), with the ethereal oxygen of the phosphate group either syn (X), as in the crystal structure, or anti (Y) with respect to the enediolate carbonyl O. The barrier height for the intramolecular proton transfer occurring in enediolate is very sensitive to electron correlation corrections. The MP2 internal energy barrier is much lower than the HF one, while the free energy (FE) barrier is even more favorable, indicating that the enzyme presence is not requested to speed up that step. An investigation of the dynamical aspects of the mechanism, along the pathway from ENEP A (with H on O(1)) to TS and from TS to ENEP B (with H on O(2)), was, however, carried out in the presence of the enzyme field while using a neutral His-95 with its proton on Ndelta. To perform the FE simulations, it was necessary to parametrize in the AMBER force-field the ENEP A, TS and B species, whose partial charges have been determined with the RESP procedure, with the X and Y arrangements of the phosphate head. Actually, the FE/QM approach produced a low barrier and a substantial balance between A and B, especially at the MP2 level. The trajectories, analyzed paying a particular attention to the positions assumed by His-95 and by the other active site residues, put forward somewhat different H-bond patterns around the X or Y enediolate phosphate.  相似文献   

19.
Solution reactions using photogenerated reagents (PGRs) (Gao, X.; Yu, P. Y.; Leproust, E.; Sonigo, L.; Pellois, J. P.; Zhang, H. J. Am. Chem. Soc. 1998, 120, 12698) are developed for parallel synthesis of addressable, combinatorial molecular microarrays. To advance the PGR chemistry for general chemical conversions, light-controlled synthesis of peptides, which employs photogenerated acids (PGAs) and/or in combination with photosensitizers for deprotection of N-t-Boc group, is demonstrated. These reactions were performed on resin and glass plates and conveniently monitored by HPLC analysis (reactions on resin) and fluorescence emission after coupling the deprotected NH(2) group with 4(5)-carboxyfluorescein. These results demonstrate the potential of the PGA chemistry for parallel synthesis of addressable peptide libraries on a microarray platform.  相似文献   

20.
Spin changes occur often in organometallic chemistry, and their effect on kinetics is not well understood. We report computations on the singlet and triplet potential energy surfaces of several processes of this type and show that the topology of the individual surfaces, as well as of the crossing regions between them, can be used to rationalize the observed reactivity in all cases. In particular, the slow addition of dihydrogen to W[N(CH(2)CH(2)NSiMe(3))(3)]H (Schrock, R. R.; Shih, K. Y.; Dobbs, D. A.; Davis, W. M. J. Am. Chem. Soc. 1995, 117, 6609) is shown to be a "spin-blocked" reaction with a high barrier due to the crossing between reactant triplet and product singlet surfaces. In contrast, addition of CO to TpCo(CO) (Detrich, J. L.; Reinaud, O. M.; Rheingold, A. L.; Theopold, K. H. J. Am. Chem. Soc. 1995, 117, 11745) is fast because the triplet and singlet surfaces cross at low energy. Particular care is taken to use DFT methods which are in adequate agreement with experimental and high-level computational energetics for these systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号