首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The trinuclear cationic zinc hydride cluster [(IMes)3Zn3H4(THF)](BPh4)2 ( 1 ) was obtained either by protonation of the neutral zinc dihydride [(IMes)ZnH2]2 with a Brønsted acid or by addition of the putative zinc dication [(IMes)Zn(THF)]2+. A triply bridged thiophenolato complex 2 was formed upon oxidation of 1 with PhS? SPh. Protonolysis of 1 by methanol or water gave the corresponding trinuclear dicationic derivatives. At ambient temperature, 1 catalyzed the hydrosilylation of aldehydes, ketones, and nitriles. Carbon dioxide was also hydrosilylated under forcing conditions when using (EtO)3SiH, giving silylformate as the main product.  相似文献   

2.
3.
4.
Methylene‐linked bis(N,N′‐di‐tert‐butylimidazol‐2‐ylidene) 1 reacted with diethylzinc to give dinuclear zinc ethyl compound 2 , which contains a formally anionic bis(carbene) ligand as a result of deprotonation of the methylene bridge. The reaction of 2 with PhSiH3 gave the phenylsilyl compound 3 . The zinc hydride 4 was obtained by the reaction of 2 with LiAlH4 or Ph3SiOH followed by treatment with PhSiH3. X‐ray diffraction studies show that compounds 2 , 3 , and 4 all have a similar dimeric structure with D2h symmetry. The reaction of hydride 4 with carbon dioxide and N,N′‐diisopropylcarbodiimide gave formato ( 5 ) and formamidinato ( 7 ) derivatives as a result of the insertion of the heterocumulene into both Zn? H bonds. Reaction with Ph2CO gave the diphenylmethoxy compound 6 . Hydride 4 shows catalytic activity in the hydrosilylation of 1,1‐diphenylethylene and methanolysis of silanes.  相似文献   

5.
NHC with EWGs for RCM : Ruthenium complexes with two N‐heterocyclic carbenes (NHCs), one of them substituted with electron‐withdrawing groups (EWGs), are highly efficient (pre)catalysts for the synthesis of tetrasubstituted olefins and trisubstituted olefins by ring‐closing metathesis reactions (RCM, see scheme).

  相似文献   


6.
The success of homogeneous catalysis can be attributed largely to the development of a diverse range of ligand frameworks that have been used to tune the behavior of various systems. Spectacular results in this area have been achieved using cyclic diaminocarbenes (NHCs) as a result of their strong σ‐donor properties. Although it is possible to cursorily tune the structure of NHCs, any diversity is still far from matching their phosphorus‐based counterparts, which is one of the great strengths of the latter. A variety of stable acyclic carbenes are known, but they are either reluctant to bind metals or they give rise to fragile metal complexes. During the last five years, new types of stable cyclic carbenes, as well as related carbon‐based ligands (which are not NHCs), and which feature even stronger σ‐donor properties have been developed. Their synthesis and characterization as well as the stability, electronic properties, coordination behavior, and catalytic activity of the ensuing complexes are discussed, and comparisons with their NHC cousins are made.  相似文献   

7.
The use of a versatile N‐heterocyclic carbene (NHC) gold(I) hydroxide precatalyst, [Au(OH)(IPr)], (IPr=N,N′‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene) permits the in situ generation of the [Au(IPr)]+ ion by simple addition of a Brønsted acid. This cationic entity is believed to be the active species in numerous catalytic reactions. 1H NMR studies in several solvent media of the in situ generation of this [Au(IPr)]+ ion also reveal the formation of a dinuclear gold hydroxide intermediate [{Au(IPr)}2(μ‐OH)], which is fully characterized and was tested in gold(I) catalysis.  相似文献   

8.
A series of new, easily activated NHC–PdII precatalysts featuring a trans‐oriented morpholine ligand were prepared and evaluated for activity in carbon‐sulfur cross‐coupling chemistry. [(IPent)PdCl2(morpholine)] (IPent=1,3‐bis(2,6‐di(3‐pentyl)phenyl)imidazol‐2‐ylidene) was identified as the most active precatalyst and was shown to effectively couple a wide variety of deactivated aryl halides with both aryl and alkyl thiols at or near ambient temperature, without the need for additives, external activators, or pre‐activation steps. Mechanistic studies revealed that, in contrast to other common NHC–PdII precatalysts, these complexes are rapidly reduced to the active NHC–Pd0 species at ambient temperature in the presence of KOtBu, thus avoiding the formation of deleterious off‐cycle PdII–thiolate resting states.  相似文献   

9.
A study on the enyne metathesis reaction leading to the formation cyclic compounds using ruthenium–indenylidene complexes is presented. Several 1,11‐dien‐6‐ynes have been subjected to ruthenium metathesis cyclization by using ruthenium–indenylidene complexes bearing various phosphine and N‐heterocyclic carbene (NHC) ligands. Interestingly, for some substrates chemodivergent metathesis occurs and is a function of the catalyst employed. This led us to investigate the competing “ene‐then‐yne” or “yne‐then‐ene” reaction pathways apparently at play in these systems using both experimental observations and DFT calculations. Experimental and computational studies were found in good agreement and permit to conclude that for phosphine‐containing catalysts, the “ene‐then‐yne” pathway is exclusively adopted. On the other hand, for catalysts bearing NHC ligands, both pathways are possible.  相似文献   

10.
A number of new N‐heterocyclic carbene (NHC) ligands were synthesized via a multicomponent reaction, wherein an aldehyde or ketone, a primary amine and an α‐acidic isocyanide were reacted, giving the corresponding 2H‐2‐imidazolines. These were easily alkylated with an alkyl halide at position N‐3, yielding the final NHC precursors, that were then complexed with Ru in situ. The resulting complexes are shown to be active and selective catalysts for the transfer hydrogenation of furfural to furfurol, using isopropanol as the hydrogen source. Importantly, the carbene ligand remains coordinated to the ruthenium center throughout the reaction. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
12.
13.
14.
15.
The five‐coordinate ruthenium N‐heterocyclic carbene (NHC) hydrido complexes [Ru(IiPr2Me2)4H][BArF4] ( 1 ; IiPr2Me2=1,3‐diisopropyl‐4,5‐dimethylimidazol‐2‐ylidene; ArF=3,5‐(CF3)2C6H3), [Ru(IEt2Me2)4H][BArF4] ( 2 ; IEt2Me2=1,3‐diethyl‐4,5‐dimethylimidazol‐2‐ylidene) and [Ru(IMe4)4H][BArF4] ( 3 ; IMe4=1,3,4,5‐tetramethylimidazol‐2‐ylidene) have been synthesised following reaction of [Ru(PPh3)3HCl] with 4–8 equivalents of the free carbenes at ambient temperature. Complexes 1 – 3 have been structurally characterised and show square pyramidal geometries with apical hydride ligands. In both dichloromethane or pyridine solution, 1 and 2 display very low frequency hydride signals at about δ ?41. The tetramethyl carbene complex 3 exhibits a similar chemical shift in toluene, but shows a higher frequency signal in acetonitrile arising from the solvent adduct [Ru(IMe4)4(MeCN)H][BArF4], 4 . The reactivity of 1 – 3 towards H2 and N2 depends on the size of the N‐substituent of the NHC ligand. Thus, 1 is unreactive towards both gases, 2 reacts with both H2 and N2 only at low temperature and incompletely, while 3 affords [Ru(IMe4)42‐H2)H][BArF4] ( 7 ) and [Ru(IMe4)4(N2)H][BArF4] ( 8 ) in quantitative yield at room temperature. CO shows no selectivity, reacting with 1 – 3 to give [Ru(NHC)4(CO)H][BArF4] ( 9 – 11 ). Addition of O2 to solutions of 2 and 3 leads to rapid oxidation, from which the RuIII species [Ru(NHC)4(OH)2][BArF4] and the RuIV oxo chlorido complex [Ru(IEt2Me2)4(O)Cl][BArF4] were isolated. DFT calculations reproduce the greater ability of 3 to bind small molecules and show relative binding strengths that follow the trend CO ? O2 > N2 > H2.  相似文献   

16.
17.
Activate and reduce : Carbon dioxide was reduced with silane using a stable N‐heterocyclic carbene organocatalyst to provide methanol under very mild conditions. Dry air can serve as the feedstock, and the organocatalyst is much more efficient than transition‐metal catalysts for this reaction. This approach offers a very promising protocol for chemical CO2 activation and fixation.

  相似文献   


18.
19.
20.
Two new dimethylvinyl carbene complexes, RuCl2(SIMes)(PPh3)CHCHC(CH3)2 and RuCl2(SIMes)(3BP)2CHCHC(CH3)2, were synthesized from RuCl2(PCp3)2CHCHC(CH3)2. Complex RuCl2(SIMes)(3BP)2CHCHC(CH3)2 does not suffer from the problem of incomplete initiation that has been observed for the other dimethylvinyl carbene complexes, as witnessed by complete and rapid reaction with ethyl vinyl ether. Acyclic diene metathesis (ADMET) polymerization of 1,9‐decadiene with these complexes was found to give polymers with chemical and thermal properties similar to those obtained with Schrock's molybdenum catalyst. These complexes are also catalysts for ring‐opening metathesis polymerization. The parent complex RuCl2(SIMes)(PCp3)CHCHC(CH3)2 was found to give polyoctenamer with high initial heats of fusion, suggesting a dependence of the “as formed” crystallinity of the polymer on the rate of the ROMP reaction. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6134–6145, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号