首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The validity of the well-established differential approximation in radiative transfer is extended to include linear-anisotropic scattering. Sample results demonstrate the accuracy of the method.  相似文献   

2.
The atmospheres of planets (including Earth) and the outer layers of stars have often been treated in radiative transfer as plane-parallel media, instead of spherical shells, which can lead to inaccuracy, e.g. limb darkening. We give an exact solution of the radiative transfer specific intensity at all points and directions in a finite spherical medium having arbitrary radial spectral distribution of: source (temperature), absorption, emission and anisotropic scattering. The power and efficiency of the method stems from the spherical numerical gridding used to discretize the transfer equations prior to matrix solution: the wanted ray and the rays which scatter into it both have the same physico-geometric structure. Very good agreement is found with an isotropic astrophysical benchmark [Avrett EH, Loeser R. Methods in radiative transfer. In: Kalkofen W, editor. Cambridge: Cambridge University Press; 1984. pp. 341-79]. We introduce a specimen arbitrary forward- side-back phase scattering function for future comparisons. Our method directly and exactly addresses spherical symmetry with anisotropic scattering, and could be used to study the Earth's climate, nuclear power (neutron diffusion) and the astrophysics of stars and planets.  相似文献   

3.
This paper deals with heat transfer in non-grey semitransparent two-dimensional sample. Considering an homogeneous purely absorbing medium, we calculated the temperature field and heat fluxes of a material irradiated under a specific direction. Coupled radiative and conductive heat transfer were considered. The radiative heat transfer equation (RTE) was solved using a S8 quadrature and a discrete ordinate method. Reflection and absorption coefficients of the medium were calculated with the silica optical properties. The conduction inside the medium was linked to the RTE through the energy conservation. Validation of the model and two original cases are also presented.  相似文献   

4.
The proposed method is based on a novel technique for approximating the angular dependence of the radiated intensity. The entire range of solid angles is divided into N cells, which are symmetric relative to the center of the sphere. In each of the cells the radiation is assigned in the form of the P 1 approximation, and a system of differential equations is obtained to determine the set of local zeroth and first moments. In some special cases the proposed approach can be regarded as a generalization of the discrete-ordinates method, which makes it possible to solve the problem of selecting the weights in the quadrature formulas in a natural manner. The effectiveness of the method is demonstrated in two one-dimensional test cases. It is shown that in these cases fairly high accuracy is achieved in the solution of the problem already for N=2. Zh. Tekh. Fiz. 67, 1–7 (September 1997)  相似文献   

5.
A boundary-based net-exchange Monte Carlo method was introduced (JQSRT 74 (2001) 563) that allows to bypass the difficulties encountered by standard Monte Carlo algorithms in the limit of optically thick absorption (and/or for quasi-isothermal configurations). With the present paper, this method is extended to scattering media. Developments are fully 3D, but illustrations are presented for plane parallel configuration. Compared to standard Monte Carlo algorithms, convergence qualities have been improved over a wide range of absorption and scattering optical thicknesses. The proposed algorithm still encounters a convergence difficulty in the case of optically thick, highly scattering media.  相似文献   

6.
By means of geometrical optics, an approximation method is presented to compute the light scattering intensity of absorbing spherical particles illuminated by a plane wave. For absorbing particles, the effective refractive index and the effective refractive angle are related to the complex refractive index and incident angle. The formulas for calculation of the break of phases of reflection and refraction, which are different from the case of transparent particles, are exactly derived. Verification of the geometrical optics approximation (GOA) was performed by case studies and comparison of the present results with the Mie scattering. It is found that agreement between the GOA and the Mie theory is excellent in forward directions for weakly/moderately absorbing particles. Differently, for strongly absorbing particles, good agreement between the calculation methods is in the forward directions and large scattering angles. The agreement between the GOA and the Mie theory is better for larger particles.  相似文献   

7.
8.
A modified diffusion approximation model called the hybrid diffusion approximation that can be used for highly absorbing media is investigated. The analytic solution of the hybrid diffusion approximation for reflectance in two-source approximation and steady-state case with extrapolated boundary is obtained. The effects of source approximation on the analytic solution are investigated, and it is validated that two-source approximation in highly absorbing media to describe the optical properties of biological tissue is necessary. Monte Carlo simulation of recovering optical parameters from refiectant data is done with the use of this model. The errors of recovering μ's and μ's are smaller than 15% for the reduced albedo between 0.77 and 0.5 with the source-detector separation of 0.4-3 mm.  相似文献   

9.
This article numerically analyses the combined conductive and radiative heat transfer in an absorbing, emitting, and isotropically scattering medium. The non-Fourier heat conduction equation, which includes the time lag between heat flux and the temperature gradient, is used to model the conductive heat transfer in the medium. It predicts that a temperature disturbance will propagate as a wave at finite speed. The radiative heat transfer is solved using the P3 approximation method. In addition, the MacCormack's explicit predictor-corrector scheme is used to solve the non-Fourier problem. The effects of radiation including single scattering albedo, conduction-to-radiation parameter, and optical thickness of the medium on the transient and steady state temperature distributions are investigated in detail. Analysis results indicate that the internal radiation in the medium significantly influences the wave nature. The thermal wave nature in the combined non-Fourier heat conduction with radiation is more obvious for large values of conduction-to-radiation parameter, small values of optical thickness and higher scattering medium. The results from non-Fourier-effect equation are also compared to those obtained from the Fourier equation. Non-Fourier effect becomes insignificant as either time increases or the effect of radiation increases.  相似文献   

10.
This paper presents a parametric study of the time-resolved hemispherical reflectance of a plane-parallel slab of homogeneous, cold, absorbing, and isotropically scattering medium exposed to a collimated Gaussian pulse. The front surface of the slab is transparent while the back surface is assumed to be cold and black. The 1-D time-dependent radiation transfer equation is solved using the modified method of characteristics. The parameters explored include (1) the optical thickness, (2) the single scattering albedo of the medium, and (3) the incident pulse width. The study pays particular attention to the maximum transient hemispherical reflectance and identifies optically thin and thick regimes. It shows that the maximum reflectance is independent of the optical thickness in the optically thick regime. In the optically thin regime, however, the maximum hemispherical reflectance depends on all three parameters explored. The transition between the optically thick and thin regimes occurs when the optical thickness is approximately equal to the dimensionless pulse width. Finally, correlations relating the maximum of the hemispherical reflectance as a function of the optical thickness, the single scattering albedo of the materials, and the incident pulse width have been developed. These correlations could be used to retrieve radiation characteristics or serve as initial guesses for more complex inversion schemes accounting for anisotropic scattering.  相似文献   

11.
A least-squares collocation meshless method is employed for solving the radiative heat transfer in absorbing, emitting and scattering media. The least-squares collocation meshless method for radiative transfer is based on the discrete ordinates equation. A moving least-squares approximation is applied to construct the trial functions. Except for the collocation points which are used to construct the trial functions, a number of auxiliary points are also adopted to form the total residuals of the problem. The least-squares technique is used to obtain the solution of the problem by minimizing the summation of residuals of all collocation and auxiliary points. Three numerical examples are studied to illustrate the performance of this new solution method. The numerical results are compared with the other benchmark approximate solutions. By comparison, the results show that the least-squares collocation meshless method is efficient, accurate and stable, and can be used for solving the radiative heat transfer in absorbing, emitting and scattering media.  相似文献   

12.
The integral form of three-dimensional radiative transfer equation for an absorbing, emitting, and linear-anisotropic scattering medium with space-dependent properties is formulated. A product-integration method is subsequently applied to develop a numerical scheme for solving the corresponding integral transfer equations in a two-dimensional, axisymmetric and nonhomogeneous medium subjected to externally incident radiation or bounded by emitting and diffusely-reflecting walls. The numerical solutions for cases of constant, continuous, and stepwise variations of scattering albedo are presented to illustrate its accuracy and flexibility, and validated by comparing with results available in the literature.  相似文献   

13.
Discrete-ordinates (DO) approximations to the radiative transfer equation in three-dimensional enclosures have extensively been used during the last three decades. The 1988 paper by Truelove [1] is one of the pioneering works in this field wherein traditional DO formulations were adapted to radiative transfer problems, and has impacted both the science and the technology related to large-scale combustion chambers since it was published. The following is a short introduction to this seminal JQSRT paper.  相似文献   

14.
A new efficient method of analysis, which utilizes the natural eigenfunctions of the problem, is developed for solving radiation transfer in an absorbing, emitting, gray, isotropically scattering, homogeneous, finite or semi-infinite, plane-parallel medium. Expressions for the forward and backward radiation intensities, the incident radiation and forward and backward radiation heat fluxes are included. Since the physical aspects of the problem are well documented, attention is focused on the presentation of the method of analysis and discussion of its convergence and accuracy. For the test case involving uniform incident radiation on the boundary surface at x = 0, it is shown that the solution converges extremely rapidly to the exact results, and that lower-order approximations are highly accurate. For example, the first-order solution predicts values of the incident radiation, reflectivity and transmissivity that are less than 1% in error in almost all cases, for optical thicknesses in the range 0.1 ⩽ L ⩽ 10 and single-scattering albedos in the range 0.1 ⩽ ω ⩽ 0.99. The present method of solution has an excellent potential for generalization to anisotropic scattering and to radiation transfer in spherical and cylindrical geometries.  相似文献   

15.
We investigate the validity of the radiative transfer equation to model transmission of light through an absorbing and scattering medium. Assuming that radiative transfer equation is valid, the inverse scattering problem for non-polarized radiative transfer in one-dimensional absorbing and scattering media is solved using a parameter identification method. We discuss how to identify the albedo, phase function and extinction coefficient of the medium. We present experimental data that confirm that this approach is robust and can be used to make reliable predictions of the behavior of scattering absorbing systems.  相似文献   

16.
Transient, combined conduction and radiation is solved in an absorbing, emitting, and isotropically scattering solid sphere with a black boundary initially at a uniform temperature and for times t > 0 subjected to a constant temperature at the spherical surface. The collocation method is used to solve the radiation part of this problem and the implicit finite difference scheme is used to solve the conduction part. The effects of the conduction-to-radiation parameter, the single scattering albedo, the optical thickness of the medium on the temperature distribution and the heat flux in the medium are examined.  相似文献   

17.
The well-known classical path approximation is applied to a calculation of diffraction intensities in the scattering of atoms from a rigid crystal with a soft interaction potential. A general expression is derived for the diffraction intensities which can be applied to potentials with several higher-order terms in the Fourier series. For an uncorrugated Morse potential with a first-order exponential corrugation term an analytic solution is obtained which is compared with the infinite order suddent (IOS) approximation calculations for Ne/W(110) and He/LiF(100). Both approximations are very accurate for the weakly corrugated Ne/W system. For He/LiF the present approximation is more accurate than the sudden (IOS) approximation and has the added advantage of providing an analytic solution. Several improvements are suggested.  相似文献   

18.
19.
20.
Spatially varying closure based on ellipsoidal intensity modeling is used to describe the anisotropic radiation field by means of a modified differential approximation. Singular behavior in region corners is identified and accounted for, and a self-consistent boundary condition suggested for the ratio of lowest order moments of intensity. Completed examples indicate removal of virtually the entire differences between Milne-Eddington and exact results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号