首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermal and magnetic measurements have been performed on several YBa2Cu3O7−δ compounds, some ones showing a large content of high Tc (93 K) superconducting phase. A jump in the specific heat ΔCp, is well evidenced at the transition allowing a determination of the ratio ΔCp/Tc ≅ 23 ± 5. mJ/ (mole Cu)K2. In addition, an estimation of the γ value (≅ 11 mJ/(mole Cu). K2) has been drawn from the determination of the electronic entropy at Tc. The samples have been characterized by susceptibility, magnetization and resistivity experiments. The critical field slopes at Tc were found to be dHc1/dT ≅ 17 Oe/K and dHc2/dT ≅ 20 kOe/K. The results are discussed in the framework of the Ginzburg-Landau theory.  相似文献   

2.
The heat capacity of [NH2(CH3)2]2 · CuCl4 crystals prior to and after γ-irradiation with doses of 1, 5, 10, and 50 MR is measured by the calorimetric method in the temperature range 80–300 K. It is found that, as the temperature decreases, the temperature dependence C p (T) exhibits two anomalies which correspond to phase transitions from the incommensurate to the ferroelectric phase at T c =281 K and from the ferroelectric to the ferroelastic phase at T 1=255 K. The nature of the anomalies is typical of a first-order phase transition. In addition, a smeared anomaly in the form of a small increase in the heat capacity of the ferroelectric phase is observed at T≈275 K. It is demonstrated that when the dose of γ-irradiation increases, the anomalies decrease in magnitude and the phase transition temperatures are displaced: T c increases and T 1 decreases.  相似文献   

3.
The specific heat of the novel high temperature superconductor Y0.7Th0.3C1.58 (Tc = 17.0 K) has been measured between 4 and 22 K. Unlike the other known high temperature superconductors (Tc > 16 K) which have either an A-15 or a NaCl-type structure, this material forms in the b.c.c., Pu2C3-type, structure. The Debye temperature, θD, is 346 K and the linear term coefficient, γ, of the specific heat has the value 4.66 mJ/mole-K2. Thus the electronic density of states, N(0), which is proportional to γ, is quite low. The energy gap, 2Δ/kTc, on the other hand has an anomalously high value of 5.8. Comparisons between these parameters of Y0.7Th0.3C1.58 and those for some A-15 and NaCl-type superconductors are made.  相似文献   

4.
The specific heat of single phase YBa2Cu3O7-δ has been measured using non-adiabatic method between 4.2K and 120K. There is a specific heat anomaly Δc at 90K (about 3.2% of total specific heat) approximately, due to superconducting transition. From the measured value of ΔC and transition temperature Tc, the electronic density of state at Fermi level N(EF) and Sommerfeld parameter γ calculated are 2.55±0.30states/eV.Cu-atom and 2.77±0.30 mJ/mole.K2, respectively. The experimental result of N(EF) is consistent with that of the band calculation by Mattheiss. The Debye temperature above Tc in this material deduced from Debye function is about 340K. Below 20K, the relation C=γ'T+βT3 is satisfied. But the value of γ' is smaller. That means, most of the electrons have formed superconducting Cooper pairs which give no contribution to specific heat below 20K.  相似文献   

5.
The specific heat from 1.2 to 23 K has been measured on a new high Tc superconductor, A-15 Nb3Si. The sample was prepared by explosive compression and has an onset of bulk superconductivity at 18.0 K, with a transition width of 0.7 K. The density of states for pure A-15 Nb3Si implied from the specific heat data is 0.94 ± 0.20 states/eV-atom, ΔC/γ Tc is 2.0 ± 0.2.  相似文献   

6.
From the temperature dependence of the specific heat of the semiconductor La2CuO4 and the high temperature superconductors La1.8Sr0.2CuO4 (T c =37.2 K) and YBa1.9K0.1Cu3O6.9 (T c =91.5 K) in the range 1.5–30 K, a strong similarity of the lowfrequency part of their phonon density of states with a peak around 10 meV could be inferred. In the case of La1.8Sr0.2CuO4 the thermodynamical critical field belowT c has been determined and using the Rutger's formula and the BCS model, a Sommerfeld coefficient γ=9 mJ·mol?1 K?1 was obtained, which, taking into account recent results of band structure calculations leads to an electron-phonon enhancement factor γ=1.3, value compatible withT c =36 K when using McMillan's formula forT c . A systematic study of the magnetization offered evidence for strong flux trapping effects at higher fields and for Meissner shielding by superconducting Josephson currents in fields below 6 mT at 4.2 K.  相似文献   

7.
The heat capacity of a single crystal of the uniaxial ferroelectric AgNa(NO2)2 was measured close to the nearly tricritical phase transition. In the ferroelectric phase a strong temperature dependence of the anomaleous specific heat is found which obeys a temperature law (θ f T)?0.494. A small latent heat was detected nearT c. The thermal behaviour of AgNa(NO2)2 is described by a Landau type theory, from which the non linear coefficientsζ andζ of the free energy expansion are derived. The thermal data fit well to the known dielectric behaviour.  相似文献   

8.
This paper reports on the first measurement of the dielectric permittivity and heat capacity of a KDP crystal doped by Chicago Sky Blue organic dye within a temperature interval including the ferroelectric phase transition at T c =122 K. Similar measurements were made on a pure KDP crystal under the same conditions for the sake of comparison. The heat capacities of the pure and doped crystals were shown to differ substantially within an interval 1 K wide in the vicinity of T c , where an anomaly in the heat capacity of the doped crystal was observed to wash out without producing any change in the temperature position of its maximum. The doping reduces the permittivity in the polar phase markedly. The observed effects are associated with the influence of nonisomorphic defects on the ferroelectric phase transition in a piezoelectric crystal.  相似文献   

9.
The superconducting transition temperature (Tc) and the temperature dependence of the normal state resistivity of the Ti1?xSbx system between Tc and 300 K have been studied. The Tc values are found to depend on the heat treatment of the samples. Below 40 K, all alloys show a T2 dependence of the resistivity. However, the sample with x = 0.53 is not superconducting and shows a different behaviour of the resistivity.  相似文献   

10.
Temperature dependences of the specific heat C and the magnetic susceptibility χ of Na1?x V2O5 single crystals (x=0, 0.01, 0.02, 0.03, and 0.04) are studied. In NaV2O5, the transition to the spin-gap state (T c =34 K) is accompanied by a sharp decrease in χ, while C exhibits a λ-shaped anomaly. At low temperatures, the specific heat of NaV2O5 is approximated by the sum of phonon ~T 3 and magnon ~exp(?Δ/T) contributions, which makes it possible to estimate the Debye temperature ΘD=336 K and the gap in the magnetic excitation spectrum Δ=112 K. With the departure from stoichiometry, the anomalies observed in the behavior of χ and C are spread and shifted to lower temperatures. The low-temperature specific heat of nonstoichiometric samples is determined by the sum of phonon and magnon components and the contribution due to the presence of defects. The values of magnetic entropy characterizing the phase transitions in Na1?x V2O5 are calculated.  相似文献   

11.
The MgB2 coated superconducting tapes have been fabricated on textured Cu (0 0 1) and polycrystalline Hastelloy tapes using coated conductor technique, which has been developed for the second generation high temperature superconducting wires. The MgB2/Cu tapes were fabricated over a wide temperature range of 460-520 °C by using hybrid physical-chemical vapor deposition (HPCVD) technique. The tapes exhibited the critical temperatures (Tc) ranging between 36 and 38 K with superconducting transition width (ΔTc) of about 0.3-0.6 K. The highest critical current density (Jc) of 1.34 × 105 A/cm2 at 5 K under 3 T is obtained for the MgB2/Cu tape grown at 460 °C. To further improve the flux pinning property of MgB2 tapes, SiC is coated as an impurity layer on the Cu tape. In contrast to pure MgB2/Cu tapes, the MgB2 on SiC-coated Cu tapes exhibited opposite trend in the dependence of Jc with growth temperature. The improved flux pinning by the additional defects created by SiC-impurity layer along with the MgB2 grain boundaries lead to strong improvement in Jc for the MgB2/SiC/Cu tapes. The MgB2/Hastelloy superconducting tapes fabricated at a temperature of 520 °C showed the critical temperatures ranging between 38.5 and 39.6 K. We obtained much higher Jc values over the wide field range for MgB2/Hastelloy tapes than the previously reported data on other metallic substrates, such as Cu, SS, and Nb. The Jc values of Jc(20 K, 0 T) ∼5.8 × 106 A/cm2 and Jc(20 K, 1.5 T) ∼2.4 × 105 A/cm2 is obtained for the 2-μm-thick MgB2/Hastelloy tape. This paper will review the merits of coated conductor approach along with the HPCVD technique to fabricate MgB2 conductors with high Tc and Jc values which are useful for large scale applications.  相似文献   

12.
MgB2 coated conductors (CCs), which can avoid the low packing density problem of powder-in-tube (PIT) processed wires, can be a realistic solution for practical engineering applications. Here we report on the superior superconducting properties of MgB2 CCs grown directly on the flexible metallic Hastelloy tapes without any buffer layer at various deposition temperatures from 520 to 600 °C by using hybrid physical–chemical vapor deposition (HPCVD) technique. The superconducting transition temperatures (Tc) are in the range of 38.5–39.4 K, comparable to bulk samples and high quality thin films. Clear (101) and (002) reflection peaks of MgB2 are observed in the X-ray diffraction patterns without any indication of chemical reaction between MgB2 and Hastelloy tapes. From scanning electron microscopy, it was found that connection between MgB2 grains and voids strongly depend on the growth temperature. A systematic increase in the flux pinning force density and thereby the critical current density with decreasing growth temperature was observed for the MgB2 CCs. The critical current density (Jc) of Jc(5 K, 0 T) ~107 A/cm2 and Jc(5 K, 2.5 T) ~105 A/cm2 has been obtained for the sample fabricated at a low growth temperature of 520 °C. The enhanced Jc (H) behavior can be understood on the basis of the variation in the microstructure of MgB2 CCs with growth temperature.  相似文献   

13.
The unit cell parameters a and c of nonirradiated [N(C2H5)4]2ZnBr4 crystals in the temperature region 90–300 K and of samples irradiated with γ rays to doses of 106 and 5 × 106 R in the 270-to 300-K interval were measured using x-ray diffraction. The data obtained were used to derive the thermal expansion coefficients αa and αc. It is shown that the parameter a increases and the parameter c decreases with increasing temperature. In the vicinity of the phase transition (PT) at T = 285 K, the temperature dependences of a(T) and c(T) reveal anomalies in the form of jumps and the αa(T) and αc(T) curves have a maximum and a minimum, respectively. The heat capacity of nonirradiated and irradiated [N(C2H5)4]2ZnBr4 samples was measured by adiabatic calorimetry. A maximum was found in the C p(T) curve at T = 285 K. Both x-ray diffraction and heat capacity measurements showed that the PT temperature decreased after γ irradiation.  相似文献   

14.
The resistivity, the magnetic susceptibility, the magnetization, and the specific heat of electronic manganite Ca0.85Sm0.15MnO3 were studied. The data obtained suggest that this compound undergoes phase transition into the insulator antiferromagnetic state at T c ~115 K and displays negative magnetoresistance at T<T c . A minor ferromagnetic component of 0.025µB in the magnetization of Ca0.85Sm0.15MnO3 may be caused by the deviation of this composition from the exact stoichiometry Mn3+: Mn4+=1: 8. The Debye temperature ΘD=575 K and the entropy of phase transition ΔS=5.1 J/(mol K) were derived from the temperature dependence of specific heat.  相似文献   

15.
In tunneling experiments with high-quality single crystals of a single-layer cuprate superconductor Bi2Sr2CuO6+δ using the break junction and point-contact techniques at T<T c, the coexistence of the superconducting-state gap and the normal-state gap was observed. The values of the superconducting energy gap 2Δp?p are in the range from 13.4 to 15 meV (Δp?p=6.7–7.5 meV). The values of 2Δp?p are similar for two samples with T c=4 K and for two samples with T c=9–10 K and are independent of the carrier concentration. The normal-state gap, with the magnitude approximately equal to 50 meV, persists at T<T c and in the magnetic field H?H c2 up to 28 T. After the transition of the sample to the normal state, the intensity of the tunneling conductance rapidly decreases with increasing magnetic field strength and temperature. The observed large broadening of the tunneling spectra and large zero-bias conductances can be caused by a strong angular dependence of the superconducting gap. The tunneling results are in full agreement with the data of the angle-resolved photoemission spectroscopy measurements.  相似文献   

16.
《Solid State Communications》1987,63(12):1189-1192
The temperature dependence of the elastic coefficients of T1InS2 has been investigated by Brillouin scattering measurements. For longitudinal phonons propagating in the (001) plane the variation of ΔC∼(TcT) was found below the ferroelectric transition point (Tc=189 K). For propagation perpendicular to the (001) plane (C33 mode) clear anomalies were observed at T=213 K and T=195 K. Between these temperatures the Brillouin peaks show broadening, which is attibuted to a coupling between the acoustic mode and an overdamped mode.  相似文献   

17.
A novel neutron high resolution double crystal arrangement has been used to measure changes in d-spacing, d-spread and mosaicity through the first order ferroelectric phase transition of DKDP. Coexistence of both para and ferroelectric phases was directly observed in the range Tc to Tc — 3 K. No hysteresis could be detected within the precision of the temperature measurement (10-3K). The origin of the overshoot effect has been elucidated.  相似文献   

18.
The effects of hydrostatic pressure and substitution of Rb+for the ammonium cations on the ferroelectric phase transition temperature in NH4H(ClH2CCOO)2 have been studied by electric permittivity measurements. The transition temperature (Tc) decreases with increasing pressure up to 800 MPa and the pressure coefficient dTc/dp=−1.4×10−2 [K/MPa] has been experimentally determined. The substitution of Rb+ for the ammonium cations has been shown to considerably lower the ferroelectric phase transition temperature Tc. In mixed crystals, additional electric permittivity anomaly has been clearly evidenced. The results are discussed assuming a model, which combines polarizability effects, related to the heavy ion units, with the pseudo-spin tunnelling.  相似文献   

19.
We report on structural, magnetic, conductivity, and thermodynamic studies of FeSe0.5Te0.5 single crystals grown by self-flux and Bridgman methods. The lowest values of the susceptibility in thenormal state, the highest transition temperature T c of 14.4 K, and the largest heat-capacity anomaly at T c were obtained for pure (oxygen-free) samples. The criticalcurrent density j c of 8.6 × 104A/cm2 (at 2 K) achieved in pure samples is attributed to intrinsic inhomogeneity due to disorder at the anion sites. The samples containing an impurity phase of Fe3O4 show increased j c up to2.3 × 105A/cm2 due to additional pinning centers. The upper critical field\(H_{c2}\)of ~500 kOe is estimated from the resistivity studyin magnetic fields parallel to the c-axis using a criterion of a 50%drop of the normal state resistivity R n . The anisotropy ofthe upper critical fieldγ H c2 =H ab c2/H c2 c reaches a value ~6 at\(T\longrightarrow T_c\). Extremely low values of the residualSommerfeld coefficient \(\gamma_r\) of about 1 mJ/mol K2,compared to the normal state Sommerfeld coefficient γ n = 25mJ/mol K2 for pure samples indicate a high volume fraction of thesuperconducting phase (up to 97%). The electronic contribution to the specific heat in thesuperconducting state is well described within a single-band BCS model with a temperature dependent gapΔ(0 K) = 27(1) K. A broad cusp-like anomaly in the electronic specific heat observed at low temperatures in samples with suppressed bulk superconductivity is ascribed to a splitting of the ground state of the Fe2+ ions at the 2c sites. This contribution is fully suppressed in the ordered state in samples with bulk superconductivity.  相似文献   

20.
The dependence of a.c. specific heat measurements upon the temperature modulation amplitude ΔT has confirmed the first-order nature of the antiferromagnetic-ferromagnetic transition in single crystal terbium (TC~221K) and polycrystalline dysprosium (TC~85K). No peak in a.c. specific heat is obtained for 2ΔT less than the temperature hysteresis at the transition. By comparison, the peaks expected in a.c. specific heat were observed at the higher-order antiferromagnetic-paramagnetic transition in both materials for ΔT amplitudes as low as~40 mK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号