首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
X-band EPR measurements are reported on a single crystal of MgSiF6·6H2O in the high-temperature phase at 328 K. The values of the parameters are evaluated rigorously from a simultaneous fitting of all EPR line positions obtained for several orientations of the external magnetic field using a rigorous computer technique. The present EPR measurements are consistent with the phase transition of MgSiF6·6H2O at 300 K as detected by crystallographic, optical. and Mössbauer techniques.  相似文献   

2.
EPR of Mn2+ doped in ammonium iodide single crystal has been studied at X-band in the temperature range 573–577 K. The observed temperature dependence of line widths and spin Hamiltonian parameter b20 below room temperature is related to the structural transformations in the crystal. The coexistence of high temperature phase (NaCl) and low temperature phase (CsCl) is attributed to the large thermal hysteresis in line widths and b20. The dissociation of ion vacancy pairs occurs near 500 K and is reflected in the reversible change of an anisotropic EPR spectrum in an isotropic sextet near this temperature. The ion vacancy pair models for NaCl and CsCl phases are discussed along with the effects of thermal processing of the samples. Heating the crystals above 500 K leads to expulsion of Mn2+ impurity from the crystal.  相似文献   

3.
郭光华 《物理学报》2001,50(2):313-318
在10—800K的温度范围内用X射线衍射方法测量了DyMn2Ge2化合物的晶格常数与温度的变化关系,观察到高温时DyMn2Ge2由顺磁状态到反铁磁状态的自发磁相变伴随着晶格常数a的负的磁弹性异常现象.在4.2K—200K的温度范围内测量了DyMn2Ge2的交流磁化率.在交换相互作用的分子场模型近似下,从理论上分析讨论了DyMn2Ge2的低温自发磁相变和场诱导的磁相变.计算了DyMn2Ge2单晶的磁化强度与温度的变化关系以及不同温度下外磁场沿晶轴c方向时的磁化曲线.理论分析和计算结果表明,温度低于33K时在DyMn2Ge2中观察到的场诱导的一级磁相变为由亚铁磁状态(Fi)到中间态(IS)相变. 关键词: 稀土-过渡族金属间化合物 磁结构 磁相变  相似文献   

4.
The EPR spectra of polycrystalline Mn(TCNQ)2·3H2O and Mn(TCNQ?d4)2 have been studied as a function of temperature from 1.5 K to 375 K. At very low temperatures the line width indicates an exchange interaction similar to that of other manganese salts. At 77 K and above the line is narrowed and shifted most likely through interaction with the electronic motion. The bulk susceptibility was measured at room temperature. The observed μeff=4.66 implies an antiferromagnetic coupling of the manganese ions.  相似文献   

5.
From a temperature variation EPR study of Mn2+ doped single crystals of Zn(ClO4)2·6H2O phase transition has been detected at T2~290 K. The phase relationships in this crystal are as follows. Phase I transforms atT2~346K to Phase II, which in turn transforms to Phase III at T2 ~ 290K. The latter exists down to at least 220 K. The space group symmetry of crystal may be the same, i.e. Pmn21 both above and below T2. The water-perchlorate sublattice symmetry below T2 is found to be lower than the P63mc symmetry determined previously by X-ray measurements. The onset of a monoclinic or lower symmetry distortion of the water octahedron around a metal ion which starts just below T2, is reflected through the observed temperature dependence of the rhombic distortion parameter E. It is felt that during this phase transition a change in the degree of configurational disorder associated with the perchlorate tetrahedra takes place, which in turn modifies the hydrogen bonded interaction in the crystal and consequently results in the onset of temperature dependent displacements of the mean positions of the oxygens of the water molecules.  相似文献   

6.
A crystalline electric field cubic symmetry site has been reported for Gd3+ in Cs2NaBiCl6 at room temperature. This host exhibits an apparent structural transformation below 100 K that is completely reversible. However, an EPR examination for a powdered sample of Cs2NaBiCl6:Gd3+ clearly demonstrates that there are no new large crystalline electric field symmetry sites arising between the transition temperature (100 K) and 30 K, suggesting, therefore, that the site symmetry remains predominantly cubic even at temperatures close to 30 K. In order to substantiate this statement, a computer EPR powder simulation was performed using the single-crystal-spin-Hamiltonian parameters obtained from the three different sites that emerge from the original site while observed at 30 K. A remarkable agreement is observed while comparing the computer-simulated data with that of powdered experimental data. It is important to mention here that several attempts were done trying to fit the observed new spectra to lower crystalline field symmetries, however, our best analytical adjustment was obtained with the cubic spin-Hamiltonian.Below 30 K, new structural transitions are present and the lattice loses its original cubic nature. However, at 10 K the EPR spectrum of the crystal again shows only seven lines that are very broad. This new spectrum cannot be fitted with previously used cubic spin-Hamiltonian parameters.  相似文献   

7.
使用牛津震动样品磁强计(VSM)研究了Bi2Sr2CaCu2O8单晶的磁滞回线.在20到40K温度之间发现了反常的尖锋效应,随样品O含量的增加,发生尖锋效应的外场也相应提高.可以认为在尖峰效应处发生了由涡漩物质的有序固态到无序固态的相变,在有少量点缺陷存在的BSCCO单晶相图上,Bsp线终止于20K温度处,在20K以下温区没有发生准格子到涡漩玻璃的相变,涡漩固相始终以准格子形式存在;可以认为尖峰效 关键词: 2Sr2CaCu2O8单晶')" href="#">Bi2Sr2CaCu2O8单晶 磁滞回线 尖锋效应 相变  相似文献   

8.
The (PO4)3? units in a CsH2PO4 (CDP) crystal were replaced in a small fraction of sites by (CrO4)3? groups and the EPR of the Cr5+ center was investigated. Splitting of the EPR line appears at T1c=245 K, 91 K higher that the ferroelectric transition temperature Tc=154 K. The electronic wave function of Cr5+ (3d1) is identified as dx2?y2. The dx2?y2 function couples with the near protons and the reorientation of this unit in the two possible configurations occurs in the paraelectric phase and breaks the symmetry far above Tc. The observed correlation time 10?9 sec and associated activation energy ΔU=0.215 eV are discussed.  相似文献   

9.
We have studied [N(C2H5)4]2MnCl4 crystal by X-band CW EPR spectra in the temperature range 170-300 K. The angular dependences of linewidth ΔH were measured and described in the light of a double-layer system (2D) with exchange interactions. Two temperature anomalies of linewidth ΔH were found at T1=225 K and T2=192 K on cooling. Different behaviors of ΔH anomalies recorded for an external magnetic field parallel and perpendicular to the ab crystallographic plane indicate ordering/disordering of MnCl4 groups in this plane and their displacement along the c-axis which occurs in the temperature of about 225 K.  相似文献   

10.
Structural phase transition in Rb2CdCl4: Mn2+ single crystal has been found near 133 K by EPR, X-ray and optical methods. Octahedral tilt system in the low temperature phase corresponds to the symmetry change D174h → D182h or D174h → C62h.  相似文献   

11.
From the EPR investigation, two different crystalline states were found in the VO2+ ion-doped BaCl2·H2O crystal. One is a dynamic disordered state, where the trapped VO+2 ion exhibits hindered rotational motion in a wide temperature region. This state is transformed to a static disordered state even at ambient temperature. The orientation of the doped ion reveals random distribution in the lattice sites. Such polymorphism does not come from phase transition of the host crystal, but from the existence of the metastable state of the VO2+ ion trapped in the lattice. The absence of the phase transition of pure BaCl2·2H2O was confirmed by the measurement of 137Ba NQR and by differential thermal analysis.  相似文献   

12.
The temperature dependence of the EPR spectrum for the α-phase of iron tungstate has been investigated in the temperature range of 40–260 K. At temperatures betweenT 1 ≈ 250 K andT 2 ≈ 205 K where the antiferromagnetic phase transition occurs, a relatively narrow EPR line arising from the dominant iron(III) species has emerged, gaining intensity with the temperature increase. Its linewidth temperature evolution could be described by Huber equation, with TN = 200 K, which is consistent with the peak seen in magnetic susceptibility measurements, while the correspondingg-factor shifts to higher fields reflecting the build-up of internal field emerging from increasing shortrange order in the spin system. At temperatures lower than T2, a very broad and distorted EPR line with temperature dependentg-factor and linewidth has been observed reflecting the corresponding rise of the magnetic susceptibility below the antiferromagnetic phase transition, presumably arising from magnetic clusters embedded in the antiferromagnetic background.  相似文献   

13.
The far-infrared optical reflectivity of an optimally doped Ba1-xKxFe2As2(x =0.4) single crystal is measured from room temperature down to 4 K. We study the temperature dependence of the in-plane infrared-active phonon at 251 cm-1 . This phonon exhibits a symmetric line shape in the optical conductivity, suggesting that the coupling between the phonon and the electronic background is weak. Upon cooling down, the frequency of this phonon continuously increases, following the conventional temperature dependence expected in the absence of a structural or magnetic transition. The intensity of this phonon is temperature independent within the measurement accuracy. These observations indicate that the structural and magnetic phase transition might be completely suppressed by chemical doping in the optimally doped Ba0.6K0.4Fe2As2 compound.  相似文献   

14.
We have observed and analyzed the transverse EPR half-field transition in the quasi-one-dimensional (1D) Heisenberg magnet (CH3)4NMnCl3 (TMMC) between 30 K and 300 K. In spite of a large temperature and angular dependence the width of this transition was found to scale exactly with the EPR main line.  相似文献   

15.
The electron paramagnetic resonance (EPR) of Nd3+ ion in KY(WO4)2 single crystal was investigated at T=4.2 K using an X-band spectrometer. The observed resonance absorption represents the complex superposition of three spectra corresponding to neodymium isotopes with different nuclear momenta. The EPR spectrum is characterized by a strong g-factor anisotropy. The temperature dependences of the g-factor were caused by strong spin-orbit and orbit-lattice coupling. The resonance lines become broader as temperature increases due to the short spin-lattice relaxation time.  相似文献   

16.
We have measured the heat capacity, Cp, of PbF2 between 400 K and 800 K using a cubic, fluorite-structure, crystal as well as material recovered in the orthorhombic form at room temperature after a fluorite-structure crystal had been pressurized to 4.5 kbar. Cp of each behaved normally up to somewhat above 600 K. However Cp of the recovered material revealed that orthorhombic PbF2 undergoes a sharp, endothermic, nonreversible transition at T = 633 K, which seems to be a transformation back to the cubic fluorite structure. The Cp of each sample exhibited a λ-like anomaly in the temperature range where a transition to the superionic state is known to occur in cubic PbF2, thus confirming the second order nature suggested for the transition.  相似文献   

17.
We report the synthesis and characterization of two new salts of BEDTTTF: (BEDTTTF)2SbF6 and AsF6. Near to room temperature these two salts show a strong anomaly of conductivity, also visible on the EPR results. The crystal structure of the high temperature phase is described and a short discussion of the nature of the metal-insulator phase transition is given.  相似文献   

18.
Electron paramagnetic resonance (EPR) experiments were made in the diluted magnetic semiconductor CuGa1−xMnxTe2, in the temperature range 70<T<300 K. The samples were synthesized by direct fusion of stoichiometric mixtures of the elements, with Mn composition from x=0.0 to 0.25. The EPR spectra were measured as function of temperature, Mn composition, and field orientation. The temperature variation of the resonance field shows a critical point at about 235 K, and is associated with a transition from the ferromagnetic to the superparamagnetic state. The resonance field was also measured as a function of the field angle, and displays a well-defined uniaxial symmetry. This uniaxial field depends on the Mn concentration and is due to tetragonal distortions induced by Mn2+ at Ga sites, and the demagnetizing effects due to formation of ferromagnetism (FM) Mn-clusters.  相似文献   

19.
The quasi-two-dimensional magnetism in the layered transition metal compound (CnH2n+1NH3)2CuCl4 (n=10, 14) was investigated by means of electron paramagnetic resonance (EPR) and superconducting quantum interference device measurements. As a result, the high temperature magnetic phase transitions were reflected in the EPR parameters in a sensitive manner.  相似文献   

20.
Perovskite CH3NH3PbI3 (MAPbI3) single crystal was grown using inverse temperature crystallization method. Crystallinity of the perovskite was confirmed by X-ray diffraction. Photoluminescence (PL) spectra revealed abnormal behavior due to a temperature-induced orthorhombic to the tetragonal phase transition. Four PL emission peaks, A, B, C, and D, were observed in the low temperature regime. Peaks A and B were observed at 756 and 776?nm?at 12?K, and were blue-shifted and disappeared at 130 and 70?K, respectively. Peaks C and D were observed at 789 and 807?nm?at 40?K and were also blue-shifted to 780 and 794?nm?at 100?K. On the other hand, the peak C red-shifted to 799?nm from 100 to 140?K because of an orthorhombic to the tetragonal phase change and was also blue-shifted above 140?K. From the excitation intensity- and temperature-dependent PL results, peaks A and B were assigned to the free-exciton and bound-exciton of the orthorhombic phase crystal, respectively. In addition, peaks C and D were associated with the free-exciton and bound-exciton of the tetragonal phase crystal, respectively. The activation energy of peak C was calculated to be 98?meV from temperature dependence of the PL intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号