首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrical resistivity of iron lead borate glasses was measured over the temperature range 300–700 K. The resistivity increases with the iron content and is a function of the Fe2+/Fetot ratio, but the minimum does not appear for 0.28 ≤ c ≤ 0.50. The samples with x > 15 mol % Fe2O3 show the presence of two activation energies for conduction. A change in the activation energy can be explained by charge transfer between iron ions in similar positions at low temperatures, and between iron ions in different positions at higher temperatures. In order to analyse the conductivity data, we have considered in all the glasses a polaronic model for conduction.  相似文献   

2.
The dielectric permittivity (?) of TMA-ZC single crystals was measured along the mean crystallographic axes a, b and c, in a temperature range from 273 to 340 K. The ?-T relationship exhibited peak values at Ti=296 K and Tc1=279 K for the three axes. These peaks are attributed to the contribution of discommensurations. The d.c. and a.c. electrical conductivity showed anomalous variation at the same transition temperatures, with a remarkable change in the value of the activation energy around the transition temperatures. The j-E characteristic indicates different types of electrical conduction. The mechanism of the phase transition and the electrical process were discussed on the basis of Shottky and Frenkel conduction mechanisms.  相似文献   

3.
Samples of the composition TlNiS2 in the hexagonal system with the unit cell parameters a=12.28 Å, c=19.32 Å, and ρ=6.90 g/cm3 are synthesized. The results of the investigation into the electrical and thermoelectrical properties of TlNiS2 samples in the temperature range 80–300 K indicate that TlNiS2 is a p-type semiconductor. It is found that, at temperatures ranging from 110 to 240 K, TlNiS2 samples in a dc electric field possess variable-range-hopping conduction at the states localized in the vicinity of the Fermi level. The density of localized states near the Fermi level is determined to be NF=9×1020 eV?1 cm?3, and the scatter of the states is estimated as J≈2×10?2 eV. In the temperature range 80–110 K, TlNiS2 exhibits activationless hopping conduction. At low temperatures (80–240 K), the thermopower of TlNiS2 is adequately described by the relationship α(T)=A+BT, which is characteristic of the hopping mechanism of charge transfer. In the case when the temperature increases to the temperature of the onset of intrinsic conduction with the activation energy ΔE=1.0 eV, there arise majority intrinsic charge carriers of both signs. This leads to an increase in the electrical conductivity σ and, at the same time, to a drastic decrease in the thermopower α; in this case, the thermopower is virtually independent of the temperature.  相似文献   

4.
The dielectric constant, ε, and the d.c. conductivity, σ, were measured along the a-, b- and c-axes of (NH4)2ZnCl4 (AZC) crystal in the 300-450 K temperature range. Crystals of AZC grown from aqueous solutions containing excess of ZnCl2 were used. The value of the dielectric permittivity of AZC is extremely small compared to other ferroelectric crystals. Pronounced broad or step-like peaks at the phase transition temperatures were detected along the a- and b-axes, while ε along the c-axis is temperature independent up to the end of the measuring range. Reciprocal of the dielectric permittivity in the range of the commensurate to incommensurate phase transition obeys a relation similar to the Curie-Weiss law that is valid for second order ferroelectric/paraelectric phase transitions. The constants of the proposed relationship applied to the cooling run are given. The J-E characteristics along the three crystallographic axes were measured in the normal, incommensurate, commensurate and antiferroelectric phases. Hence, the type of conduction mechanism has been estimated. Parameters of Poole-Frenkel and Richardson-Schottky types of conduction mechanism have been determined. The effect of applied electric field on the conductivity measurement was also tested. Conductivity anomalies with different character were observed at the phase transition temperatures. The lnσ−1000/T dependence revealed thermal activation energy of conduction along the a-, b- and c-axes with different values in different phases of AZC.  相似文献   

5.
Calorimetric studies of amorphous Se75S25−xAgx (x = 2, 4, 6 and 8) chalcogenide glasses are made at different heating rates (5, 10, 15 and 20 K/min) under non-isothermal condition using Differential scanning calorimetry. The values of glass transition temperature and crystallization temperature are observed to be composition and heating rate dependence. From the heating rate dependence of glass transition temperature and crystallization temperature, the activation energy for structural relaxation (ΔEt), the activation energy of crystallization (ΔEc) and the order parameter (n) have been calculated. It is observed that Se75S19Ag6 has a minimum value of activation energy for structural relaxation (ΔEt), which indicates that this particular glass has a larger probability to jump to a state of lower configurational energy and higher stability in the glassy region. On the basis of the obtained experimental data the temperature difference (Tc  Tg) is found to be maximum for Se75S19Ag6, which further indicate that this glass is the thermally most stable in the entire composition range of investigation.  相似文献   

6.
Poly(azomethine sulfone)s were synthesized by reacting 4,4′-sulfonyl bis(4-chlorophenyl) with 2,2-bis(4-hydroxyphenyl)propane and azomethine bisphenol in different molar ratios. Thin films were deposited from solution onto glass substrates. Study of the temperature dependences of the electrical conductivity, σ, and Seebeck coefficient, S, were performed in the temperature range 300 K–500 K. Thermal activation energies of electrical conduction, Ea , calculated from these dependences, ranged between 1.50 eV and 1.85 eV. The values of Ea were smaller for polymers with extended conjugation systems. The possibility to use the polymers in thermistor technology is discussed. The aspect of the temperature dependences of σ and S shows that a model based on the energy band-gap representation can be successfully used for explaining the electronic transport mechanism in the higher temperature range. In the lower temperature range, the mechanism of the electrical conduction is discussed in terms of the Mott variable range hopping conduction. The values of some optical parameters (absorption coefficient, optical band gap, etc.) were determined from transmission spectra.  相似文献   

7.
Results of differential scanning calorimetry, at different heating rates, α, on Ga5Se95 glass are reported and discussed. From the heating rates dependence of values of Tg and Tp, the glass activation energy, Eg and the crystallization activation energy, Ec, are derived. The crystallization results are interpreted in terms of recent analyses developed for non-isothermal crystallization and also for the evaluation of Ec. The crystallization mechanism is then characterized. From the obtained results, the glassy Ga5Se95 has two-dimensional growth, the average value of the order of crystallization mechanism, n is 3. The average value of the glass activation energy, Eg and crystallization activation energy, Ec, for Ga5Se95 glass are 189±4 and 69±5 kJ/mol, respectively.  相似文献   

8.
Electrical resistivity, thermoelectric power and current noise were measured on Li-doped MnO single crystals in the temperature range from 300 to 1000 K. Below 700 K the crystals are p-type and the activation energy of the resistivity is 0.75 eV. Around 700 K the activation energy changes from 0.75 to 1.25 eV owing to a change from p- to n-type conduction. The depth of the Li acceptor is found to be 0.65 eV. From resistivity and thermoelectric power data it is concluded that the bandgap in first approximation can be written as Es(T) = Eo ? γT between 750 and 1000 K, with Eo = 1.9 eV and γ = 6 × 10?4 eV/K. The current noise spectra show 1? noise. The magnitude of the 1? noise is strongly temperature dependent. From the noise data it is deduced that Eo = 2.2 eV and γ = 10?3 eV/K in the temperature range 430–700 K.  相似文献   

9.
Optically clear glasses in the ZnO–Bi2O3–B2O3 (ZBBO) system were fabricated via the conventional melt-quenching technique. Dielectric constant and loss measurements carried out on ZBBO glasses unraveled nearly frequency (1 kHz–10 MHz)-independent dielectric characteristics associated with significantly low loss (D?=?0.004). However, weak temperature response was found with temperature coefficient of dielectric constant 18?±?4 ppm °C?1 in the 35–250 °C temperature range. The conduction and relaxation phenomena were rationalized using universal AC conductivity power law and modulus formalism respectively. The activation energy for relaxation determined using imaginary parts of modulus peaks was 2.54 eV which was close to that of the DC conduction implying the involvement of similar energy barriers in both the processes. Stretched and power exponents were temperature dependent. The relaxation and conduction in these glasses were attributed to the hoping and migration of Bi3+ cations in their own and different local environment.  相似文献   

10.
New glasses have been prepared according to these formulas (70-x)V2O5-30BaF2-xAF, where AF=LiF or NaF and (60-x)V2O5-30BaF2-10LiF-xAF, where AF=NaF and x=10, 15, 20, 25 and 30 mol%. Density of the glasses was measured and molar volume calculated and they correlated with the AF content. The dc conductivity has been measured in the temperature range from 302 to 453 K. The dc conductivity increases with temperature and V2O5 content, while it decreases with the alkali fluoride content. Conductivity has been correlated with the calculated polaron distance, R, and glass transition temperature, Tg. The activation energy, W, increases with the increase in the alkali fluoride, while it decreases with the V2O5 content. Some parameters like polaron distance, R, polaron radius, rp, ion concentrations, n(V), n(Li) or n(Na), hopping energy, WH, density of localized states at Fermi level, N(EF), polaron coupling constant, γp, polaron band width, J, hopping mobility, μ, and carrier density for electronic conduction, Nc, were calculated to explain the conduction mechanism and behavior of the present glasses.  相似文献   

11.
We report on the temperature dependences of the optical gap Eo and the photoconductivity threshold (?ω)o for undoped hydrogenated amorphous silicon films. When increasing the temperature, both Eo and (?ω)o are seen to linearly decrease at respective rates β= 3.5 10?4 eV K?1 (temperature range 290 K–460 K) and γ= 5.2 10?4 eV K?1 (temperature range 220 K – 360 K). At higher temperatures Eo decreases at the rate β = 14.3 10?4 ev K?1. Our results are discussed in terms of conduction in extended states. We show there is no physical reason in relating the temperature dependence of the activation energy and that of the gap as generally assumed. From optical absorption we deduce a minimum metallic conductivity σmin the value of which agrees with Mott's predictions. On the contrary, σmin measured from dark conductivity is nearly two orders of magnitude lower. A discussion is proposed infering band bending at the film substrate interface.  相似文献   

12.
The optical absorption of the as-prepared and thermally annealed Se85−xTe15Sbx (0≤x≤9) thin films was measured. The mechanism of the optical absorption follows the rule of non-direct transition. The optical energy gap (E0) decreased from 1.12 to 0.84 eV with increasing Sb content of the as-prepared films from 0 to 9 at.%. The as-prepared Se76Te15Sb9 films showed an increase in (E0) with increasing the temperature of annealing in the range above Tg (363 K). The electrical conductivity of the as-prepared and annealed films was found to be of Arrhenius type with temperature in the range 300-360 K. The activation energy for conduction was found to decrease with increasing both the Sb content and temperature of annealing. The results were discussed on the basis of the lone-pair electron effect and of amorphous crystalline transformation.  相似文献   

13.
Memory switching of germanium tellurium amorphous semiconductor   总被引:1,自引:0,他引:1  
The dc conductivity and switching properties of amorphous GeTe thin film of thickness 262 nm are investigated in the temperature range 303-373 K. The activation energy ΔEσ, the room temperature electrical conductivity σRT and the pre-exponential factor σ0 were measured and validated for the tested sample. The conduction activation energy ΔEσ is calculated. The I-V characteristic curves of the thin film samples showing a memory switching at the turnover point (TOP) from high resistance state (OFF state) to the negative differential resistance state (NDRS) (ON state). It is found that the mean values of the threshold electrical field Eth decreased exponentially with increasing temperatures in the investigated range. The switching activation energy ΔEth is calculated. Measurements of the dissipated threshold power Pth and the threshold resistance Rth were carried out at TOP point at different temperatures of the samples. The activation energies ΔER and ΔEP caused by resistance and power respectively are deduced. The results obtained support thermal model for initiating switching process in this system.  相似文献   

14.
The conduction band parameters of GaSb have been investigated in the temperature region 70–280 K. Hall and magnetoresistance data have been analysed according to the two band model to obtain information about the energy separation ΔE12 of the conduction band minima and its temperature coefficient α2.  相似文献   

15.
Bulk Se80Te20 and Se80Sb20 glasses were prepared using the melt–quench technique. Differential scanning calorimetry (DSC) curves measured at different heating rates (5 K/min≤α≤50 K/min) and X-ray diffraction (XRD) are used to characterize the as-quenched specimens. Based on the obtained results, the activation energy of glass transition and the activation energy of crystallization (E g, E c) of the Se80Te20 glass are (137.5, 105.1 kJ/mol) higher than the corresponding values of the Se80Sb20 glass (106.8, 71.2 kJ/mol). An integer n value (n=2) of the Se80Te20 glass indicates that only one crystallization mechanism is occurring while a non-integer exponent (n=1.79) in the Se80Sb20 glass means that two mechanisms are working simultaneously during the amorphous–crystalline transformations. The total structure factor, S(K), indicates the presence of the short-range order (SRO) and the absence of the medium-range order (MRO) inside the as-quenched alloys. In an opposite way to the activation energies, the values of the first peak position and the total coordination number (r 1, η 1), obtained from a Gaussian fit of the radial distribution function, of the Se80Te20 glass are (2.42 nm, 1.99 atom) lower than the corresponding values (2.55 nm, 2.36 atom) of the Se80Sb20 specimens.  相似文献   

16.
We develop quantum theory of nonresonant ultrasonic and electromagnetic absorption in glasses at low temperatures. In the quantum region where ?ω?kT the nonresonant absorption coefficients are proportional to ω3 which seems to be in agreement with the existing experimental data.The existence of characteristic temperature Tc (or characteristic energy Ec = kTc) of the order of 10 + 20 K is established. At higher interlevel spacing E the concept of two-level systems in their conventional form is not applicable because of their strong coupling to the phonons. Neither the perturbation theory is applicable for calculation of absorption in the frequency interval ?ω?c or at temperature interval T?Tc = Ec/k.  相似文献   

17.
Bulk Se96Sn4 chalcogenide glass was prepared by melt quenching technique and irradiated by different doses of 4, 8, 12, 24 and 33 kGy using 60Co gamma emitter. I-V characteristics were obtained for this glass, before and after gamma irradiation, in the temperature range 200-300 K. Ohmic behavior was observed at low electric fields (≤1×104 V/m), while at higher fields, a deviation from ohmic towards non-ohmic behavior was observed. The plots of ln(I/V) vs. V were found to be straight lines and the slopes of these lines decrease linearly with temperature indicating the presence of SCLC. In the temperature range of measurements, the dependence of DC conductivity on temperature at low electric field shows two types of conduction channels, one in high temperature range 270-300 K and the other at low temperature range 200-270 K. Analysis of the experimental data shows that the conductivity at room temperature decreases with increase in irradiation dose. This is attributed to rupturing of SnSe4/2 structural units, upon irradiation, and rebuilt of Se atoms between Se chains. This redistribution of bonds, induced by gamma irradiation, is responsible for the corresponding increase in the activation energy. The obtained values of the activation energy indicate that the conduction occurs due to thermally assisted charge carriers movement in the band tail of localized states. However, in the low temperature range, results obtained from Mott’s variable range hopping (VRH) model reveal that the density of localized states has its maximum value at a gamma dose of 12 kGy, while the disorder parameter To, hopping distance Rhop and hopping energy W have their minimum value at this particular dose.  相似文献   

18.
Measurements of the Ga diffusion into CdS, in the presence of exces Ga metal, using optical and mixroprobe analyser techniques are reported. A reaction layer of CdGa2S4 forms on the CdS crystals below 1240±20 K. Above this temperature the reaction layer is liquid. The Ga diffusion is concentration dependent and also orientation dependent with the faster diffusion perpendicular to the hexagonal c-axis of CdS. The anisotropy of the activation energy was calculated to be 0.20±0.06 eV. In the temperature range 940–1240K the linearly concentration dependent diffusion yielded activation energy values for defect motion of 2.39±0.13 eV perpendicular to the c-direction and 2.21 ±0.13 eV parallel to the c-direction.  相似文献   

19.
The paper concerns itself with the investigation results of temperature dependencies of electric conduction and dielectric properties of Ag2Hgl4 crystals in the frequency range of 107–7,8·1010 Hz. The obtained data have shown that in α-phase at T=326 K, the electric conductivity σ is proportional v0,28 in the frequency range of 107–109 Hz and σ is proporti onal v0,5 in the range of (1,1–78)·109 Hz. The dependence σ(v) in the range of (1,1–78)·109 Hz may be conditioned by the jumping mechanism of the conductivity and low frequency oscillations of the crystal lattice. It is believed, tha in the σ-phase of Ag2Hgl4 a condition of the existence of the ionic polaron is satisfied. The activation energy of the polaron is ΔEp=0,09 eV.  相似文献   

20.
We present an investigation of the near band-gap optical properties of TlSbS2 between 2 and 300 K. We use both transmission and reflectivity measurements. The resolution of the first exciton line permits to obtain an accurate determination of the temperature coefficients of both the direct band-gap E0 and the second threshold E1. The absorption curves have been fitted according to the Toyozawa's model. We find a strong interaction with a phonon mode of energy 22 meV for both the E0 and E1 thresholds. The low temperature reflectivity spectra reveal clearly several direct transitions in the range 1.5–5.5 eV. All these structures have been identified as transitions between the highest valence band and the lowest conduction band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号