首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On the Selectivity of the Isolobal Proton Exchange in the Hydrido/Phsophido Bridged Dirhenium Complex Re2(μ-H)(μ-PCyH)(CO)8 H2PCy and Re2(CO)10 in Xylene were heated in a sealed glass tube at 170°C for 18 h to afford Re2(μ-H)(μ-PCyH)(CO)8 in a yield of 30% and the cis/trans isomer pair Re2(μ-PCyH)2(CO)8 in yields of 27% (trans) and 21% (cis). The isomer trans Re2(μ-PCyH)2(CO)8 could be partially converted to the cis isomer by deprotonation with the non nucleophilic base DBU or by heating in xylene solution. The complex Re2(μ-H)(μ-PCyH)(CO)8 which is bifunctional relative to a proton abstraction was treated with equimolar amounts of DBU to generate [Re2(μ-H)(μ-PCy)(CO)8]? under release of the more acidic proton from the PH group. Subsequently, this anion undergoes an isomerization to the thermodynamically more stable [Re2(μ-PCyH)(CO)8]? by proton transfer. Such knowledge about the isomeric anions enabled us to synthesize selectively the monoaurated isomers Re2(μ-AuPPh3)(μ-PCyH)(CO)8 and Re2(μ-H)(μ3-PCy(AuPPh3))(CO)8 in good yields by reaction with equimolar amounts of the electrophil ClAuPPh3. In the presence of excess DBU and a twofold amount of ClAuPPh3 the complex Re2(μ-H)(μ-PCyH) · (CO)8 formed the diaurated complex Re2(μ-AuPPh3)(μ3-PCy(AuPPh3))(CO)8 (91%). Compared to the corresponding known dimanganese-gold isomers, each of the analogous dirhenium-gold complexes obtained showed no tendency for an isomerization process. Finally, the single crystal X-ray analyses of the three dirhenium-gold complexes led to the subsequent Re? Re bond lengths: 313,6(1) pm in Re2(μ-H)(μ3-PCy(AuPPh3))(CO)8, 316,8(2) pm in Re2(μ-AuPPh3)(μ3PCy(AuPPh3))(CO)8 and 326,1(2) pm in Re2(μ-AuPPh3)(μ-PCyH)(CO)8.  相似文献   

2.
Synthesis of Carboxylate Substituted Rhenium Gold Metallatetrahedranes Re2(AuPPh3)2(μ-PCy2)(CO)71-OC(R)O) (R = H, Me, CF3, Ph, 3,4-(OMe)2C6H3) The reaction of the in situ prepared salt Li[Re2(μ-H)(μ-PCy2)(CO)7(ax-C(Ph)O)] ( 2 ) with 1,5 equivalents of monocarboxylic acid RCOOH (R = H ( 4 a ), Me ( 4 b ), CF3 ( 4 c ), Ph ( 4 d ), 3,4-(OMe)2C6H3 ( 4 e ) in tetrahydrofruan (THF) solution at 60 °C gives within 4 h under release of benzaldehyde (PhCHO) the η1-carboxylate substituted dirhenium salt Li[Re2(μ-H)(μ-PCy2)(CO)71-OC(R)O)] (R = H ( 4 a ), Me ( 4 b ), CF3 ( 4 c ), Ph ( 4 d ), 3,4-(OMe)2C6H3 ( 4 e )) in almost quantitative yield. The lower the pKa value of the respective carboxylic acid the faster the reaction proceeds. It was only in the case of CF3COOH possible to prove the formation of the hydroxycarbene complex Re2(μ-H)(μ-PCy2)(CO)7(=C(Ph)OH) ( 5 ) prior to elimination of PhCHO. The new compounds 4 a–4 e were only characterized by 31P NMR and ν(CO) IR spectroscopy as they are only stable in solution. They are converted with two equivalents of BF4AuPPh3 at 0 °C in a so-called cluster expansion reaction into the heterometallic metallatetrahedrane complexes Re2(AuPPh3)2(μ-PCy2)(CO)71-OC(R)O) (R = H ( 7 a ), Me ( 7 b ), CF3 ( 7 c ), Ph ( 7 d ), 3,4-(OMe)2C6H3 ( 7 e )) (yield 47–71% ). The expected precursor complexes of 7 a–7 e Li[Re2(AuPPh3)(μ-PCy2)(CO)71-OC(R)O] ( 8 ) were not detected by NMR and IR spectroscopy in the course of the reaction. Their existence was retrosynthetically proved by the reaction of 7 b with an excess of the chelating base TBD (1,5,7-Triazabicyclo[4.4.0]dec-5-en) forming [(TBD)xAuPPh3][Re2(AuPPh3)(μ-PCy2)(CO)71-OC(Me)O] ( 8 b ) in solution. The η1-bound carboxylate ligand in 7 a–7 e can photochemically be converted into a μ-bound ligand in Re2(AuPPh3)2(μ-PCy2)(μ-OC(R)O)(CO)6 (R = H ( 9 a ), Me ( 9 b ), CF3 ( 9 c ), Ph ( 9 d ), 3.4-(MeO)2C6H3 ( 9 e )) under release of one equivalent CO. All isolated cluster complexes were characterized and identified by the following analytical methods: elementary analysis, NMR (1H, 31P) spectroscopy, ν(CO) IR spectroscopy and in the case of 7 d and 9 b by X-ray structure analysis.  相似文献   

3.
Insertion of a Terminal Halogeno Ligand into Diorgano-bridged Dirhenium and Rhenium-Molybdenum Complex Anions in the Presence of an Amidin Cation and the Isomerization Processes The equimolar reaction of in situ generated anion Anions Re2(μ-PCy2)(CO)8? (Re? Re) in the presence of a steric expansive amidine cation DBUH+ with bromine and iodine in tetrahydrofuran solution gave the two isomers Re2(PCy2)(CO)8X (Re? Re) and Re2(μ-PCy2)(μ-X)(CO)8 (X = Br, I), of which the isomer with a terminal X ligand as major product was formed under maintenance of the Re? Re bond. The monotropic isomerization process of Re2(μ-PCy2)(CO)8I runs thermically relative slowly, but more rapid in photochemical and electrochemical processes. The analogeous reaction of the heterometallic anion ReMo(η5-C5H5)(μ-PPh2)(CO)6? with iodine delivers opposite to the former reaction mainly the bridged isomer ReMo(η5-C5H5)(μ-PPh2μ-I)(CO)6 besides ReMo(η5-C5H5)(μ-PPh2)(CO)6I. The obtained complexes were characterized by means of v(CO) and 31P NMR spectroscopic measurements. Single-crystal analyses led to the subsequent metal—metal bond lengths: Re? Re of 308.0(1) pm in Re2(μ-PCy2)(CO)8Br and Re? Mo of 313.6(1) pm in ReMo(η5-C5H5)(μ-PPh2)(CO)6I.  相似文献   

4.
Heterometallic Cluster Complexes of the Types Re2(μ-PR2)(CO)8(HgY) and ReMo(μ-PR2)(η5-C5H5)(CO)6(HgY) (R = Ph, Cy; Y = Cl, W(η5-C5H5)(CO)3) Dinuclear complexes Re2(μ-H)(μ-PR2)(CO)8 and ReMo(μ-H)(μ-PR2)(η5-C5H5)(CO)6 (R = phenyl, cyclohexyl) were deprotonated and reacted as anions with HgCl2 to compounds of the both types Re2(μ-PR2)(CO)8HgCl) and ReMo(μ-PR2)(η5-C5H5)(CO)6(HgCl). The heterometallic three-membered cluster complexes correspond to an isolobal exchange of a proton against a cationic HgCl+ group. For one of the products ReMo(μ-PCy2)(η5-C5H5)(CO)6(HgCl) has been shown its conversion with NaW(η5-C5H5)(CO)3 to ReMo(μ-PCy2)(η5-C5H5)(HgW(η5-C5H5)(CO)3) under substitution of the chloro ligand, par example. The newly prepared compounds were characterized by means of IR, UV/VIS and 31P NMR data. A complete determination of the molecular structure by single crystal analyses was done in the case of Re2(μ-PCy2)(CO)8(HgCl) and of ReMo(μ-PCy2)(η5-C5H5)(CO)6(HgCl) which both are dimer because of the presence of an asymmetric dichloro bridge, and of ReMo(μ-PCy2)(η5-C5H5)(CO)6(HgW(η5-C5H5)(CO)3). The structural study illustrates through comparison the influence of various metal types on an interaction between centric and edge-bridged frontier orbitals in three-membered metal rings.  相似文献   

5.
Tetranuclear Cluster Complexes of the Type [MM′(AuR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (M,M′ = Mn, Re; R = Ph, Cy, Et): Synthesis, Structure, and Topomerisation The dirhenium complex [Re2(μ‐H)(μ‐PCy2)(CO)7(ax‐H2PCy)] ( 1 ) reacts at room temperature in thf solution with each two equivalents of the base DBU and of ClAuPR3 (R = Ph, Cy, Et) in a photochemical reaction process to afford the tetranuclear clusters [Re2(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 2 ), Cy ( 3 ), Et ( 4 )) in yields of 35–48%. The homologue [Mn2(μ‐H)(μ‐PCy2)(CO)7(ax‐H2PCy)] ( 5 ) leads under the same reaction conditions to the corresponding products [Mn2(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 6 ), Et ( 8 )). Also [MnRe(μ‐H)(μ‐PCy2)(CO)7(ax/eq‐H2PCy)] ( 9 ) reacts under formation of [MnRe(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 10 ), Et ( 11 )). All new cluster complexes were identified by means of 1H‐NMR, 31P‐NMR and ν(CO)‐IR spectroscopic measurements. 2 , 4 and 10 have also been characterized by single crystal X‐ray structure analyses with crystal parameters: 2 triclinic, space group P 1, a = 12.256(4) Å, b = 12.326(4) Å, c = 24.200(6) Å, α = 83.77(2)°, β = 78.43(2)°, γ = 68.76(2)°, Z = 2; 4 monoclinic, space group C2/c, a = 12.851(3) Å, b = 18.369(3) Å, c = 40.966(8) Å, β = 94.22(1)°, Z = 8; 10 triclinic, space group P 1, a = 12.083(1) Å, b = 12.185(2) Å, c = 24.017(6) Å, α = 83.49(29)°, β = 78.54(2)°, γ = 69.15(2)°, Z = 2. The trapezoid arrangement of the metal atoms in 2 and 4 show in the solid structure trans‐positioned an open and a closed Re…Au edge. In solution these edges are equivalent and, on the 31P NMR time scale, represent two fluxional Re–Au bonds in the course of a topomerization process. Corresponding dynamic properties were observed for the dimanganese compounds 6 and 8 but not for the related MnRe clusters 10 and 11 . 2 and 4 are the first examples of cluster compounds with a permanent Re–Au bond valence isomerization.  相似文献   

6.
The 30-electron binuclear anion [Mo2Cp2(μ-PCy2)(μ-CO)2] reacts with the chlorophosphite ClP(OEt)2 or the organotin chlorides Cl2SnPh2 or ClSnPh3 to give compounds of the formula trans-[Mo2Cp2(μ-E)(μ-PCy2)(CO)2], (E = P(OEt)2, SnPh3, SnPh2Cl). In contrast, this anion reacts with the organosilicon chlorides ClSiR3 (R = Ph, Me) to give unstable silyloxycarbyne-bridged complexes [Mo2Cp2(μ-PCy2)(μ-COSiR3)(μ-CO)], which rapidly hydrolyze to give the known hydride [Mo2Cp2(μ-H)(μ-PCy2)(CO)2]. Two main types of products were also observed in the reactions of the title anion with different chlorocomplexes of the transition and post-transition metals. Thus, the reactions with [MCl2Cp2] (M = Ti, Zr) give moisture-sensitive isocarbonyl-bridged complexes of the type [Mo2Cp2(μ-COMClCp2)(μ-PCy2)(μ-CO)]. In contrast, softer metallic electrophiles such as [AuCl(PR3)] (R = iPr, ptol) react with the anion at the dimolybdenum site to form new trimetallic clusters of the formula [AuMo2Cp2(μ-PCy2)(CO)2(PR3)], also retaining a Mo−Mo triple bond. Subsequent reactions of the latter products with the solvate complexes [Au(PR3)(THF)][PF6] give the tetranuclear clusters [Au2Mo2Cp2(μ-PCy2)(CO)2(PR3)2][PF6] (Mo−Mo = 2.5674(3) Å and Au−Au = 2.7832(2) Å when R = iPr). Finally, the reaction of the title anion with HgI2 gives the pentanuclear cluster [Hg{Mo2Cp2(μ-PCy2)(CO)2}2] or the trinuclear cluster [Mo2Cp2(μ-HgI)(μ-PCy2)(CO)2] depending on the stoichiometry being actually used for the reaction. The trinuclear species is only stable in tetrahydrofuran (THF), and decomposes to give a mixture of the dimeric species [Mo2Cp2(μ-HgI)(μ-PCy2)(CO)2]2 along with variable amounts of the known iodide-bridged complex [Mo2Cp2(μ-I)(μ-PCy2)(CO)2].  相似文献   

7.
Cothermolysis of the clusters [Fe33-Q)(μ3-AsCH3)(CO)9] (Q = Se and Te) and the complexes [Cp*M(CO)2] (M = Rh and Ir) was accompanied by isolobal replacement of the fragment {Fe(CO)3} by {Cp*M}; the final reaction products were [Fe2M(μ3-Q)(μ3-AsCH3)(CO)6Cp*]. For M = Ir, these reactions involved addition of an iridium fragment to the starting cluster to give the intermediate adducts [Fe3Ir(μ4-Q)(μ4-AsCH3)(CO)8Cp*]. In the case of [Cp*Rh(CO)2], the intermediate tetranuclear rhodium adducts were also isolated. Sets of these adducts differed for the selenide ([Fe3Rh(μ4-Se)(μ4-AsMe)(CO)8Cp*] and [Fe2Rh23-Se)(μ4-AsMe)(CO)6Cp2*]) and telluride clusters ([Fe3Rh(μ4-Te)(μ3-AsMe)(μ-CO)(CO)9Cp*] and [Fe3Rh23-Te)(μ4-AsMe)(μ3-CO)(μ-CO)(CO)8Cp2*]). The structures of all 10 novel heterometallic clusters were determined by single-crystal X-ray diffraction analysis. Original Russian Text ? N.A. Pushkarevskii, D.A. Bashirov, A.V. Litke, A.V. Virovets, N.V. Kurat’eva, M. Scheer, S.N. Konchenko, 2008, published in Koordinatsionnaya Khimiya, 2008, Vol. 34, No. 12, pp. 883–895.  相似文献   

8.
The stability of the complex (μ-H)Os3(μ-OCNMe2)(CO)9PPh2CH2CH=CH2 (1), which contains a free unsaturated functional group in the terminal ligand PPh2CH2CH=CH2, with respect to isomerization, chelation of the ligand, and other transformations in solutions was examined. No transformations of complex1 were observed in the course of synthesis from (μ-H)Os3(μ-OCNMe2)(CO)9NMe3 or upon heating in solution. Complex1 as well as complexes (μ-H)Os3(μ-OCNMe2)(CO)9PHPh2 and (μ-H)Os3(μ-OCNMe2)(CO)9PPh3, which were formed as admixtures, were isolated in the solid state and identified by1H,1H-{31P}, and1H-{1H} NMR, IR, and Raman spectroscopy and mass spectrometry. For Part 52, see Ref. 1. Published inIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1455–1460, August, 2000.  相似文献   

9.
Reaction of [Os3(CO)10(CH3CN)2] with thianthrene at 80 °C leads to the nonacarbonyl dihydride compound [Os3(CO)9(μ-3,4-η2-C12H6S2)(μ-H)2] (1) and the 46-electron monohydride compound [Os3(CO)932-C12H7S2)(μ-H)] (2). Compound 2 reacts reversibly with CO to give the CO adduct [Os3(CO)10(μ-η2-C12H7S2)(μ-H)] (3) whereas with PPh3 it gives the addition product [Os3(CO)9)(PPh3)(μ-η2-C12H7S2)(μ-H)] (4) as well as the substitution product 1,2-[Os3(CO)10((PPh3)2] (5) Compound 2 represents a unique example of an electron-deficient triosmium cluster in which the thianthrene ring is bound to cluster by coordination of the sulfur lone pair and a three-center-two-electron bond with the C(2) carbon which bridges the same edge of the triangle as the hydride. Electrochemical and DFT studies which elucidate the electronic properties of 2 are reported. Dedicated to the memory of a great scientist, F. Albert Cotton.  相似文献   

10.
The synthesis and crystal structures of the clusters M3(AuPPh3)(C≡CFc)(CO)9 (M=Ru,3a; or M=Os,3b) are described. Compound3a was synthesized by deprotonation of Ru3H(C≡CFc)(CO)9 under the action of KOH/EtOH followed by treatment of the anionic complex [Ru3(C≡CFc)(CO)9] with chloro(triphenylphosphine)gold. Compound3b was prepared by the reaction of Os3(CO)10(NCMe)2 with FcC≡CAuPPh3, which was synthesized by the reaction of FcC≡CNa with ClAuPPh3. The pentanuclear cluster Ru4(AuPPh3)(C≡CFc)(CO)12 (4a), which was prepared by the reaction of3a with Ru3(CO)12, was characterized by spectral methods. Published inIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1295–1299, July, 2000.  相似文献   

11.
Thermal decomposition of the tetranuclear nickel(II) complex Ni42-o-(NH2)(NHPh)C6H4|2(MeCN)2(μ-OOCCMe3)42-OOCCMe3)2 (I) under an inert atmosphere (o-xylene, 140 °C) was investigated. Under these conditions, the asymmetric binuclear complex Ni|η2-o-(NH2)(NHPh)C6H4‖(η1-o-(NH2))(NHPh)C6H4|(η2,η-O,O-OOCCMe3)(η2-OOCCMe3) (2) was formed at the first stage. Complex2 was converted into the symmetric dimer Ni|η1-o-(NH2)(NHPh)C6H4|(μ-OOCCMe3)4 (3) upon recrystallization from benzene. The structures of complexes2 and3 were established by X-ray diffraction analysis. Published inIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 1915–1918, November, 2000.  相似文献   

12.
This article describes recent developments in chemical study on a series of butterfly-shaped μ-CO-containing Fe/E (E = S, Se, Te) cluster salts. These salts include eleven novel cluster anions, which are the single butterfly one μ-CO-containing [(μ-RE)(μ-CO)Fe2(CO)6]- (A), the double butterfly two μ-CO-containing {[(μ-CO)Fe2(CO)6]2(μ-EZE-μ)}2- (B, E = S; C, E = Se), the triple butterfly three μ-CO- containing {[(μ-CO)Fe2(CO)6]3[(μ-SCH2CH2)3N]}3- (D), {[(μ-CO)Fe2(CO)6]3[1,3,5-(μ-SCH2)3C6H3]}3- (E), {[(μ- CO)...  相似文献   

13.
Two stable thiazolylazo anion radical complexes of ruthenium(II), [Ru(L1•−)(Cl)(CO)(PPh3)2] (1) and [Ru(L2•−)(Cl)(CO)(PPh3)2] (2) (where L1 = 2′-Thiazolylazo-2-imidazole and L2 = 4-(2′-Thiazolylazo)-1-n-hexadecyloxy-naphthalene), have been synthesized and characterized by spectroscopic and electrochemical techniques. The radical nature of the complexes has been confirmed from their room temperature magnetic moments and X-band ESR spectra. The radical complexes display a moderately intense (ε ~ 104 M−1 cm−1) and relatively broad band in 430–460 nm region. In the microcrystalline state, complexes (1) and (2) display strong ESR signals at g = 1.951 and g = 1.988, respectively. In CH2Cl2 solution, complexes (1) and (2) show a quasireversible one-electron response near −0.64 and −0.59 V, respectively, versus Ag/AgCl due to the radical redox couple [RuII(L)(Cl)(CO)(PPh3)2]/[RuII (L•−)(Cl)(CO)(PPh3)2].  相似文献   

14.
The migration of the double bond in the allylcarboxamide ligands of (μ-H)Os3(μ-O=CN RCH2CH=CH2) (CO)10 (R=H (1) or CH3 (2)), (μ-D)Os3(μ-O=CNDCH2CH=CH2) (CO)10, and (μ-H)Os3(μ-O=CNHCD2CH=CH2)(CO)10 clusters was studied by1H,2H, and13C NMR spectroscopy. Neither μ-D nor ND groups in the deuterated complexes are directly involved in prototropic processes of allylic rearrangement. Initially, the deuterium atom of the CD2 group migrates to the ψ-carbon atom of the allyl fragment to form the −CD=CH-CH2D propenyl moiety, in which the deuterium and hydrogen atoms are gradually redistributed between the ψ-and β-carbon atoms. The triosmium cluster complexes containing the bridging carboxamide ligands O=CNRR' catalyze the allylic rearrangement ofN-allylacetamide. Based on the data obtained, the probable scheme of the allylic rearrangements in clusters1 and2 was proposed. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2182–2186, November, 1999.  相似文献   

15.
Heterobinuclear Complexes: Synthesis and X‐ray Crystal Structures of [RuRh(μ‐CO)(CO)4(μ‐PtBu2)(tBu2PH)], [RuRh(μ‐CO)(CO)3(μ‐PtBu2)(μ‐Ph2PCH2PPh2)], and [CoRh(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)] [Ru3Rh(CO)73‐H)(μ‐PtBu2)2(tBu2PH)(μ‐Cl)2] ( 2 ) yields by cluster degradation under CO pressure as main product the heterobinuclear complex [RuRh(μ‐CO)(CO)4(μ‐PtBu2)(tBu2PH)] ( 4 ). The compound crystallizes in the orthorhombic space group Pcab with a = 15.6802(15), b = 28.953(3), c = 11.8419(19) Å and V = 5376.2(11) Å3. The reaction of 4 with dppm (Ph2PCH2PPh2) in THF at room temperature affords in good yields [RuRh(μ‐CO)(CO)3(μ‐PtBu2)(μ‐dppm)] ( 7 ). 7 crystallizes in the triclinic space group P 1 with a = 9.7503(19), b = 13.399(3), c = 15.823(3) Å and V = 1854.6 Å3. Moreover single crystals of [CoRh(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 9 ) could be obtained and the single‐crystal X‐ray structure analysis revealed that 9 crystallizes in the monoclinic space group P21/a with a = 11.611(2), b = 13.333(2), c = 18.186(3) Å and V = 2693.0(8) Å3.  相似文献   

16.
Several new gold-containing cluster complexes have been prepared from the reactions of gold alkynyl complexes, L n M-C x -Au(PPh3), (x = 3, 4, 6) with Ru3(CO)10(NCMe)2. The bis-cluster complex 1,4-{AuRu3(CO)9(PPh3)(μ3-C2)}2C6H4 was obtained from Ru3(CO)10(NCMe)2 and 1,4-{(Ph3P)Au(C≡C)}2C6H4. The complexes Ru3(μ-H){μ3-C2C≡C[Ru(PP)Cp′]}(CO)9 [PP = (PPh3)2, Cp′ = Cp; PP = dppe, Cp′ = Cp*] were also obtained as minor by-products and synthesised independently from Ru(C≡CC≡CH)(PP)Cp′. A reaction between Co33-CC≡CC≡CAu(PPh3)}(μ-dppm)(CO)7 and Ru3(CO)12 afforded {(Ph3P)(OC)9AuRu3}C≡CC≡CC{Co3(μ-dppm)(CO)7} 7. Related complexes AuRu33-C2C≡[M(CO)2Tp]}(CO)9(PPh3) (M = Mo 8, W 9) were obtained from {Tp(OC)2M}≡CC≡C{Au(PPh3)}, while the mixed metal cluster complexes MoM2(C2Me)(CO)8Tp (M = Ru 13, Fe 14) were obtained from M(≡CC≡CSiMe3)(CO)2Tp (M = Mo, W) with Fe2(CO)9 and Ru3(CO)12, respectively. Reactions of the Mo carbyne complex with Co2(LL)(CO)6 [LL = (CO)2, μ-dppm] or nickelocene afforded complexes 15–17 in which Co2 and Ni2 fragments, respectively, had coordinated to the C≡C triple bond. XRD structural determinations of 7, 8, 14, 16 and {Tp(OC)2W}≡CC≡CC≡{Co3(μ-dppm)(CO)7} (18-W) are reported. In memoriam: F. Albert Cotton (1930–2007).  相似文献   

17.
The reaction of the complex Re2(CO)4(NO)2Cl4 (1) with NaSCMe3 (2) (in THF or MeCN, 65–80°C, 24 h) was studied at different ratios of the reagents (from 1∶2 to 1∶6). At the reagent ratio of 1∶2, the binuclear complex Re2(CO)4(NO)2Cl2(μ-SCMe3)2 (3) was obtained as a mixture ofsyn andanti isomers (3a and3b, respectively) containing Re2S2 fragments with different structures (the butterfly-like structure in3a and the planar fragment in3b). When the initials were taken in ratios from 1∶4 to 1∶6, two compounds were isolated: the binuclear complex Re2(CO)4(NO)2(μ-SCMe3)2(μ-S)4 (cocrystallized as a mixture ofsyn andanti isomers,4a and4b, respectively) and the triangular cluster Re3(CO)3(NO)3(μ-SCMe3((μ3-S)(μ3-Cl) (5). Apparently, complex4 is formed in the course of isolation as a result of elimination of SR2 from the unstable tetrathiolate dimer Re2(CO)4(NO)2(SCMe3)2(μ-SCMe3)2 (6). Cluster5 is the product of the reaction between compounds3 and4. Products of interaction of compound6 with silica gel upon column chromatography of the reaction mixture were studied. Four complexes containing hydroxy and oxo bridging groups, (CO)2(NO)Re(μ-SCMe3)2(μ-OH)Re(SCMe3)(CO)(NO) (7), (CO)3(NO)3RE3(μ-SCMe3)33-SCME3)(μ3-O) (8), [(CO)2(NO)2Re2(SCMe3)2(μ-SCMe3)2(μ-OH)][Na(THF)(Et2O)] (9), and [(CO)2(NO)2Re2(SCMe3)2(μ-SCMe3)2(μ-OH)]2−[Na(H2O)6][H5O2] (10), were isolated. The structures of complexes3, 4, 5, 7, 8, 9, and10 were established by X-ray diffraction study. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1030–1044, May, 1998.  相似文献   

18.
The 30-electron dimolybdenum anion [Mo2Cp2(μ-PCy2)(μ-CO)2] reacts at room temperature with allyl chloride to give the unsaturated σ:π-bonded alkenyl derivative trans-[Mo2Cp2(μ-η12-CMeCH2)(μ-PCy2)(CO)2], this requiring a 2,1-hydrogen shift in the allyl moiety probably induced by the unsaturated nature of the dimetal center. In a similar way, the dimolybdenum anion reacts with trans-1-chloro-2-butene (crotyl chloride) to give a mixture of the alkenyl complexes trans-[Mo2Cp2(μ-η12-CEtCH2)(μ-PCy2)(CO)2] and trans-[Mo2Cp2(μ-η12-CMeCHMe)(μ-PCy2)(CO)2] in a 3:2 ratio, which could not be separated by column chromatography. All these alkenyl species exhibit a dynamic behavior in solution (fast on the NMR timescale even at low temperatures) involving alternative π-bonding of the alkenyl ligand to each metal center. In contrast, the title anion reacts with propargyl chloride (ClCH2-CCH) without further rearrangement of the propargyl moiety, to afford the allenyl derivative trans-[Mo2Cp2{μ-η23-CH2CCH)}(μ-PCy2)(CO)2] as the major species. Acryloyl chloride (ClC(O)-CHCH2) also reacts with the title anion to give a mixture of two products, the carbyne complex [Mo2Cp2{μ-COC(O)CHCH2}(μ-PCy2)(μ-CO)] and the vinyl trans-[Mo2Cp2(μ-η12-CHCH2)(μ-PCy2)(CO)2], in a 1:1 ratio. This reaction is a unique case in which a single electrophile can attack both nucleophilic positions in the dimolybdenum anion, these being located at the O(carbonyl) and metal sites, respectively. The formation of the vinyl derivative requires the decarbonylation of a metal-bound acryloyl group, which proved to be an irreversible reaction, since the addition of CO to the above alkenyl complex gave instead the tricarbonyl vinyl derivative cis-[Mo2Cp2(μ-η12-CHCH2)(μ-PCy2)(CO)3]. The structure of this electron-precise complex was confirmed through a single-crystal X-ray diffraction analysis (Mo−Mo = 3.0858(7) Å).  相似文献   

19.
The reaction of Ru3(CO)12 with tetramethyltrifluoromethylcyclopentadiene at various ratios of the reagents was studied. Refluxing of Ru3(CO)12 with a sixfold excess of tetramethyltrifluoromethylcyclopentadiene in octane in an inert atmosphere gave a complex, which is, according to X-ray diffraction data, a dimer,trans-[Ru(η5-C5Me4CF3)(CO)2]2. The reaction under the same conditions but starting from Ru3(CO)12 and C5Me4CF3H in 2∶1 molar ratio gave a hexaruthenium cluster [Ru63-H)(η24-CO)2(μ-CO)(Co)125-C5Me4CF2)], which was characterized by IR as well as1H,13C, and19F NMR spectroscopy. According to X-ray diffraction data, an Ru4 tetrahedron, in which two edges are bound by additional “briding” Ru atoms, constitutes the frame of this compound. This complex has one (η5-C5Me4CF3) ligand, as well as one (μ3-H) and two (η24-CO) groups. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 507–512, March, 1998.  相似文献   

20.
Summary Equimolar quantities of [MI2(CO)3(NCMe)2] (M = Mo or W) and C3H4N2 (pyrazole) react in CH2C12 at room temperature to give the iodo-bridged dimers [M(μ-I) (CO)3(C3H4N2)]2 (1) and (2). Two equivalents of C3H4N2 react with [MI2(CO)3(NCMe)2] (M = Mo or W) to give the bis(pyrazole) complexes [MI2(CO)3(C3H4N2)2] (3) and (4) in good yield. Three and four equivalents of pyrazole react with [MoI2(CO)3(NCMe)2] to give the cationic complexes [MoI(CO)3(C3H4N2)3]I (5) and [MoI(CO)2(C3H4N2)4]I (6), respectively. The mixed ligand complexes [MI2(CO)3(C3H4N2)L] (M = Mo or W; L = PPh3, AsPh3 or SbPh3) (7)-(12) are prepared by reacting equimolar amounts of [MI2(CO)3(NCMe)2] and L in CH2C12 at room temperature, followed by an in situ reaction with one equivalent of C3H4N2. The MoSnCl3 complex [MoCl(SnCl3)(CO)3(C3H4N2)2] (13) is prepared in an analogous manner using acetone as the solvent, whilst the mixed ligand compound [MoCl(SnQ3)(CO) 3(C3H4N2)(PPh3)] (14) was prepared by treating the dimeric complex [Mo(μ-Cl)(SnCl3)(CO)3(PPh3)]2 with two equivalents of C3H4N2. All the new complexes were characterised by elemental analysis (carbon, hydrogen and nitrogen), i.r. and 1H n.m.r. spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号