首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— The survival curve obtained after UV irradiation of the unicellular cyanobacterium Synecho-cystis is typical of a DNA repair competent organism. Inhibition of DNA replication, by incubating cells in the dark, increased resistance to the lethal effects of UV at higher fluences. Exposure of irradiated cells to near ultraviolet light(350–500 nm) restored viability to pre-irradiation levels. In order to measure DNA repair activity, techniques have been developed for the chromatographic analysis of pyrimidine dimers in Synechocystis. The specificity of this method was established using a haploid strain of Sacchar-omyces cerevisiae. In accordance with the physiological responses of irradiated cells to photoreactivating light, pyrimidine dimers were not detected after photoreactivation treatment. Incubation of irradiated cells under non-photoreactivating growth conditions for 15 h resulted in complete removal of pyrimidine dimers. It is concluded that Synechocystis contains photoreactivation and excision repair systems for the removal of pyrimidine dimers.  相似文献   

2.
Abstract— Simian virus 40 chromosomes were used to determine whether packaging of DNA into chromatin affected the yield of cyclobutane pyrimidine dimers introduced by ultraviolet light (254 nm). SV40 chromatin and purified SV40 DNA (radioactively labeled with different isotopes) were mixed and irradiated in vitro . The proteins were extracted and pyrimidine dimers detected as sites sensitive to the UV-endonuclease encoded by bacteriophage T4. When irradiation was carried out in the presence of at least 0.05 M NaCl the same number of dimers were formed in chromatin as in free DNA. Irradiation in the absence of NaCl, however, reduced the relative yield of dimers in chromatin to 89% of that in free DNA. Different methods of chromatin preparation did not influence these results.  相似文献   

3.
Abstract— Structural alterations of DNA irradiated with UV light were analyzed by the agarose gel technique. Relaxed, circular pAT 153 DNA molecules were sensitized by broad band radiation with a maximum at 313 nm in the presence of silver ions or irradiated with 254 nm light in buffer only. In both cases the electrophoretic mobility of DNA topoisomers was altered as a linear function of UV exposure. For DNA irradiated in the sensitized reaction the unwinding angle per site sensitive to Micrococcus luteus pyrimidine dimer endonuclease was found tobe–11.4°. This value is significantly smaller thanthe–14.3° already known for DNA topoisomers irradiated with 254 nm light. The irradiated DNAs were a very good substrate for the Escherichia coli photoreactivating enzyme (PRE). However, the photoenzymic removal of all sites sensitive to the endonuclease specific for pyrimidine dimers was not coupled to a full restoration of the original electrophoretic mobility. Thirty and 23% of the unwinding were still present in the photoreactivated topoisomers and the unwinding angles per pyrimidine dimer were then recalculatedas–10.1°and–8.7° for DNAs irradiated with 254 nm and sensitized, respectively. The limited difference between these two values could result from the different base composition of the pyrimidine dimers generated in the conditions of irradiation used. These results show that the tertiary structure of DNA is measureably altered by UV photodamages other than pyrimidine dimers.  相似文献   

4.
Abstract. –MDV-1 RNA is a sequenced variant of Q/β RNA. This study analyzed the ultraviolet photosensitivity of the RNA with respect to its activity as template for the Q/β replicase reaction. An assay to measure the template activity is described and the quantum yield for inactivation of the template activity is shown to be 1.1 × 10-3. Both uridine hydrates and pyrimidine dimers were found in the irradiated RNA. 1.4 hydrates were produced per lethal hit while less than 0.2 dimers were present per lethal hit. The production of uridine hydrates paralleled ultraviolet inactivation. It was concluded that hydrates were the significant lesion in irradiated MDV-1 RNA.  相似文献   

5.
Abstract— Ultraviolet radiation of 220–300 nm is known to produce cyclobutyl pyrimidine dimers in extracellular DNA, in bacteria, and in mammalian cells in culture. The formation in vivo of such dimers in mammalian skin has remained inferential. We report that one of the important and recognizable biologic events that occurs in mammalian skin during irradiation is the formation of thymine dimers. [3H]-labelled thymidine was applied to the epilated skin of guinea pigs to label their DNA. Animals were irradiated individually, using wavelengths of either 254, 285–350, or 320–400 nm. Immediately after irradiation, epidermis was separated from the rest of the skin and homogenized; DNA and RNA were isolated. Irradiation with wavelengths of 285–350 nm, which included the sunburn-producing spectrum (i.e., 290–320 nm), produced thymine dimers (1·7–2·6 per cent of the total [3H]-thymine incorporated into DNA). Irradiation with 254nm also produced fewer dimers (0·46–1·2 percent); and 320–400 nm produced none. The dimer could be cleaved by 250 nm radiation to form thymine. The epidermal cell damage by ultraviolet radiation, particularly by the sunburn-producing spectrum (290–320 nm), may be related to the formation of such dimers.  相似文献   

6.
Abstract The enzyme-linked immunosorbant assay (ELISA) was modified to (1) characterize antibodies raised in rabbits against UV-irradiated single-stranded DNA (UVssDNA) complexed with methylated BSA and (2) directly detect pyrimidine dimers in irradiated DNA. The antisera specifically bound to UVssDNA, UVpoly(dT) and to a limited extent to UVdsDNA and UVpoly(dC) immobilized on protamine sulfate coated microliter wells. Fifty percent of the maximum antibody binding was observed at a 1-5000 dilution against UVssDNA. Binding to ssDNA and poly(dT) was observed only at much higher concentrations of antibody (1:500 dilution), whereas no binding to double stranded DNA (dsDNA) was observed. The extent of binding of the antibody was dependent on the dose of UV radiation to DNA, as well as, to the concentration of antigen immobilized on the plate. Specific binding to DNA irradiated with 5.0 J/m2 was detected with as little as 10 ng of DNA. The sensitivity was further extended to less than 1 J/m2 by using higher concentrations (100 ng) of UVssDNA. The ability of various irradiated molecules, DNA, homopolymers and linkers to act as inhibitors of antibody binding establish that the antigenic determinants are mainly thymine homodimers with lower affinity for cytosine dimers. Potential usefulness of the antibodies to directly quantitate pyrimidine dimers in cells exposed to UV radiation was determined by indirect immunofluorescence. Flow cytometric analysis of immunostained human lymphocytes irradiated with 254 nm radiation indicated that greater than 50% of the population had significantly higher fluorescent intensity than unirradiated control cells.  相似文献   

7.
Abstract— Cultured cells derived from a goldfish were irradiated with 254nm ultraviolet light. Cell survival and splitting of pyrimidine dimers after photoreactivation treatment with white fluorescent lamps were examined by colony forming ability and by a direct dimer assay, respectively. When UV-irradiated (5 J/m2) cells were illuminated by photoreactivating light, cell survival was enhanced up to a factor of 9 (40min) followed by a decline after prolonged exposures. Exposure of UV-irradiated (15 J/m2) cells to radiation from white fluorescent lamps reduced the amounts of thymine-containing dimers in a photoreactivating fluence dependent manner, up to about 60% reduction at 120 min exposure. Keeping UV-irradiated cells in the dark for up to 120min did not affect either cell survival or the amount of pyrimidine dimers in DNA, indicating that there were not detectable levels of a dark-repair system in the cells under our conditions. Correlation between photoreactivation of colony forming ability and photoreactivation of the pyrimidine dimers was demonstrated, at least at relatively low fluences of photoreactivating light.  相似文献   

8.
Abstract— DNA from Escherichia coli was irradiated at 254 nm in the presence of silver in order to preferentially enhance the rate of formation of pyrimidine-dimer damage over nondimer damage. The irradiated DNA was treated with formaldehyde in order to measure the unwinding velocity of the defects associated with the pyrimidine dimers. This velocity was found to be 0.18 base pairs/min per pyrimidine dimer, which is nearly 8 times less than that found for a double-strand break (1.37 base pairs/min) obtained by use of sheared DNA whose size was determined by electron microscopy. The rate of reaction of the DNA with formaldehyde varied linearly with the pyrimidine dimer concentration and showed no inflection due to clustering. Treatment of irradiated DNA with UV endonuclease enhanced the formaldehyde reaction by ? 7-fold, consistent with the conversion of a dimer into the faster-reacting defect associated with a single-strand break. These results indicate that the distribution of dimers in DNA is random and not clustered, and that previous interpretations of clustering were based on the false assumption that dimer and chain break defects unwind with similar velocities when treated with formaldehyde.  相似文献   

9.
An immunoslot blot assay was developed to detect pyrimidine dimers induced in DNA by sublethal doses of UV (254 nm) radiation. Using this assay, one dimer could be detected in 10 megabase DNA using 200 ng or 0.5 megabase DNA using 20 ng irradiated DNA. The level of detection, as measured by dimer specific antibody binding, was proportional to the dose of UV and amount of irradiated DNA used. The repair of pyrimidine dimers was measured in human skin fibroblastic cells in culture following exposure to 0.5 to 5 J m-2 of 254 nm UV radiation. The half-life of repair was approximately 24, 7 and 6 h in cells exposed to 0.5, 2 and 5 J m-2 UV radiation, respectively. This immunological approach utilizing irradiated DNA immobilized to nitrocellulose should allow the direct quantitation of dimers following very low levels of irradiation in small biological samples and isolated gene fragments.  相似文献   

10.
11.
FORMATION OF PURINE PHOTOPRODUCTS IN A DEFINED HUMAN DNA SEQUENCE   总被引:2,自引:0,他引:2  
The formation of DNA base damages by broad spectrum ultraviolet irradiation (250-400 nm) was investigated using a defined sequence of human DNA. The irradiated, 92 base pair, 3'-end of the human alphoid segment was incubated with an enzyme fraction purified from bacteriophage T4-infected E. coli. As previously reported, analysis of reaction products by sequencing gels showed enzymic incision of purine-containing photoproducts as well as pyrimidine cyclobutane photodimers. The purine-incising activity does not require metal ions and was unaffected by beta-mercaptoethanol or dithiothreitol. The formation of the purine photoproducts is independent of buffer; these lesions are produced by irradiation of DNA in Tris, Hepes or phosphate buffers. They are produced at biologically significant wavelengths between 260 to 300 nm. Only low levels were detected above or below this range. The formation of purine photoproducts is dose dependent with similar yields at some specific loci to pyrimidine dimers. These results suggest that purine-containing photoproducts could be of consequence in ultraviolet carcinogenesis.  相似文献   

12.
The induction of edema and pyrimidine dimers in epidermal DNA was determined in the skin of SKH:HR1 mice exposed to graded doses of ultraviolet radiation AI (UVAI; 340-400 nm). Exposure to UVAI induced 1.6 +/- 0.08 x 10(-6) (mean +/- standard error of mean) pyrimidine dimers per 10(8) Da of DNA per J/m2. Edema in irradiated animals was determined as an increase in skinfold thickness. A dose of 1.8 x 10(6) J/m2 of UVAI that resulted in a 50% increase in skinfold thickness (SFT50%) would have induced 1.0 x 10(5) dimers per basal cell genome. A similar increase in SFT induced by full spectrum solar ultraviolet radiation (290-400 nm) would accompany the induction of 11.0 x 10(5) pyrimidine dimers per basal cell genome. These results support a hypothesis that UVAI-induced pathological changes of the skin are mediated through the formation of nondimer photoproducts.  相似文献   

13.
Abstract Induction and fate of ultraviolet radiation-induced pyrimidine dimers in DNA have been measured in the epidermis of the marsupial, Monodelphis domestica, using damage-specific endonucleases from Micrococcus luteus. Approximately 90% of the dimers are lost when irradiated animals are subjected to photoreactivating light for 180 min. No loss of dimers was detected when the animals were held for a similar period of time in the dark. The capacity of these epithelial cells to photorepair pyrimidine dimers may provide a useful whole animal system in which to determine the role of pyrimidine dimers in photobiological responses of the skin.  相似文献   

14.
DESTRUCTION OF PHOTOREACTIVATING ENZYME BY 365 nm RADIATION*   总被引:3,自引:0,他引:3  
Abstract— Following the observation that in vivo photoreactivation of 365-nm-induced pyrimidine dimers could not be observed chemically, a study was made of the inactivation of photoreactivating enzyme activity by this near-ultraviolet wavelength. It was observed that: (1) Dimers induced in extracted bacterial DNA by 365 nm radiation are completely photoreactivable and are monomerized as an exponential function of the photoreactivation time. (2) Photoreactivability of 254-nm-induced damage in Escherichia coli B/r Hcr is progressively destroyed in vivo as a function of the dose of 365 nm radiation. (3) The ability of the yeast photoreactivating enzyme to monomerize dimers induced at 365 nm in bacterial DNA is destroyed in vitro as a function of the dose of 365 nm radiation, and at a rate comparable to killing of E. coli. These results are consistent with biological measurements which indicate that photoreactivability of ultraviolet (near and far) lethal damage is reduced by exposure of the bacteria to 365 nm radiation.  相似文献   

15.
Abstract Mouse 3T3 cells irradiated with ultraviolet light synthesize DNA containing sites sensitive to the single-strand specific SI nuclease. The appearance of these sites correlates well with the presence of discontinuities in nascent strands, detected by the methodology of sedimentation in alkaline sucrose gradient. Thus, both the sites sensitive to SI nuclease and the discontinuities in nascent strands (i) are stabilized by caffeine; (ii) are no longer formed late after irradiation and (iii) disappear faster when a certain UV fluence is split into two fluences whose sum equals the single fluence. Moreover, the recovery in synthesizing DNA without SI sensitive sites is not dependent on excision repair of pyrimidine dimers or on continuous DNA synthesis. These SI sensitive sites are exclusive of replicative structures of irradiated cells and should correspond to stretches of single-strand DNA (gaps) formed during replication.  相似文献   

16.
A new platform has been developed for DNA lesion detection using a cationic conjugated polymer (CCP). DNA that contains two adjacent thymine bases is irradiated with ultraviolet light to allow for the formation of cyclobutane pyrimidine dimers and pyrimidine–pyrimidone dimers. The DNA lesions block the primer extension, and the base labeled with fluorescein cannot be incorporated into the DNA strand. Addition of the CCP leads to inefficient fluorescence resonance energy transfer (FRET) from CCP to fluorescein. For the case without DNA lesions, successful primer extension allows for efficient FRET between them. In view of the FRET signal changes, the DNA lesions can be detected. This new protocol offers a convenient detection for DNA lesions in aqueous solution without any isolation and washing steps.

  相似文献   


17.
Abstract —As an aid to understanding the relationship between dimer repair and cellular recovery, we have studied dimer removal and replication of dimer-containing DNA in Chinese hamster ovary (CHO) cells irradiated with ultraviolet light (254 nm). These investigations demonstrated that (1) dimers are not excised as polynucleotides of less than 500,000 mol. wt, (2) fractionation of the ultraviolet dose does not enhance dimer excision, (3) dimer-containing DNA is replicated in ultraviolet-irradiated CHO cells, and (4) the dimers are conserved in the replicated DNA. These findings support the proposed mechanism of bypass of photoproducts during DNA replication in mammalian cells.  相似文献   

18.
THE FATE OF PYRIMIDINE DIMERS IN ULTRAVIOLET-IRRADIATED CHLAMYDOMONAS   总被引:1,自引:0,他引:1  
Abstract— We have developed a chromatographic technique for the separation of 32P-labeled pyrimidine nucleotide dimers of the form PypPy from 32P-phosphate in enzymatic hydroly sates of ultraviolet-irradiated DNA. Application of this technique to 32P-labeled Chlamydomonas reinhardii shows that ultraviolet irradiation of this organism induces pyrimidine dimers in both nuclear and chloroplast DNA. We have found no evidence that these dimers are excised from either DNA species after several hours incubation under non-photoreactivating conditions. A function has been derived to permit the pyrimidine-dimer content determined from radioactive-thymine-labeled cells to be conveniently compared to that obtained from 32P-phosphate-labeled cells.  相似文献   

19.
We examined the production of pyrimidine dimers by UV radiation in different intracellular forms of simian virus 40 DNA. Virus and chromatin or previrions were selectively labeled with [l4C]-thymidine and [3H]-thymidine, respectively, in the same monolayer of infected cells. Viral DNA was extracted immediately after irradiation, and pyrimidine dimers were detected as sites sensitive to the UV-endonuclease encoded by bacteriophage T4. No difference in the number of dimers introduced into chromatin, previrions. or virions was detected.  相似文献   

20.
Six new monoclonal antibodies (TDM-2, TDM-3, 64M-2, 64M-3, 64M-4 and 64M-5) specific for ultraviolet (UV) induced DNA damage have been established. In the antibody characterization experiments, two TDM antibodies were found to show a dose-dependent binding to UV-irradiated DNA (UV-DNA), decrease of binding to UV-DNA after cyclobutane pyrimidine dimer photoreactivation, binding to DNA containing cyclobutane thymine dimers, and unchanged binding to UV-DNA after photoisomerization of (6-4)photoproducts to Dewar photoproducts. These results indicated that the epitope of TDM monoclonal antibodies was the cyclobutane pyrimidine dimer in DNA. On the other hand, four 64M antibodies were found to show a dose-dependent binding to UV-DNA, unchanged binding to UV-DNA after cyclobutane pyrimidine dimer photoreactivation, undetectable binding to DNA containing thymine dimers, and decrease of binding to UV-DNA after photoisomerization of (6-4)photoproducts. These results indicated that the epitope of 64M antibodies was the (6-4)photoproduct in DNA. This is the first report of the simultaneous establishment of monoclonal antibodies against the two different types of photolesions from the same mouse. By using these monoclonal antibodies, we have succeeded in measuring both cyclobutane pyrimidine dimers and (6-4)photoproducts in the DNA from human primary cells irradiated with physiological UV doses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号