首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoinitiated charge separation (CS) and recombination (CR) in a series of donor-bridge-acceptor (D-B-A) molecules with cross-conjugated, linearly conjugated, and saturated bridges have been compared and contrasted using time-resolved spectroscopy. The photoexcited charge transfer state of 3,5-dimethyl-4-(9-anthracenyl)julolidine (DMJ-An) is the donor, and naphthalene-1,8:4,5-bis(dicarboximide) (NI) is the acceptor in all cases, along with 1,1-diphenylethene, trans-stilbene, diphenylmethane, and xanthone bridges. Photoinitiated CS through the cross-conjugated 1,1-diphenylethene bridge is about 30 times slower than through its linearly conjugated trans-stilbene counterpart and is comparable to that observed through the diphenylmethane bridge. This result implies that cross-conjugation strongly decreases the π orbital contribution to the donor-acceptor electronic coupling so that electron transfer most likely uses the bridge σ system as its primary CS pathway. In contrast, the CS rate through the cross-conjugated xanthone bridge is comparable to that observed through the linearly conjugated trans-stilbene bridge. Molecular conductance calculations on these bridges show that cross-conjugation results in quantum interference effects that greatly alter the through-bridge donor-acceptor electronic coupling as a function of charge injection energy. These calculations display trends that agree well with the observed trends in the electron transfer rates.  相似文献   

2.
The stable free radical 2,2,6,6-tetramethylpiperidinoxyl (TEMPO, T*) was covalently attached to the electron acceptor in a donor-chromophore-acceptor (D-C-A) system, MeOAn-6ANI-Phn-A-T*, having well-defined distances between each component, where MeOAn = p-methoxyaniline, 6ANI = 4-(N-piperidinyl)naphthalene-l,8-dicarboximide, Ph = 2,5-dimethylphenyl (n = 0,1), and A = naphthalene-1,8:4,5-bis(dicarboximide) (NI) or pyromellitimide (PI). Using both time-resolved optical and EPR spectroscopy, we show that T* influences the spin dynamics of the photogenerated triradical states 2,4(MeOAn+*-6ANI-Phn-A-*-T*), resulting in modulation of the charge recombination rate within the triradical compared with the corresponding biradical lacking T*. The observed spin-spin exchange interaction between the photogenerated radicals MeOAn+* and A-* is not altered by the presence of T*, which interacts most strongly with A-* and accelerates radical pair intersystem crossing. Charge recombination within the triradicals results in the formation of 2,4(MeOAn-6ANI-Phn-3*NI-T*) or 2,4(MeOAn-3*6ANI-Phn-PI-T*) in which T* is strongly spin polarized in emission. Normally, the spin dynamics of correlated radical pairs do not produce a net spin polarization; however, the rate at which the net spin polarization appears on T* closely follows the photogenerated radical ion pair decay rate. This effect is attributed to antiferromagnetic coupling between T* and the local triplet state 3NI, which is populated following charge recombination. These results are explained using a switch in the spin basis set between the triradical and the three-spin charge recombination product having both T* and 3*NI or 3*6ANI present.  相似文献   

3.
The spin-spin exchange interaction, 2J, in a radical ion pair produced by a photoinduced electron transfer reaction can provide a direct measure of the electronic coupling matrix element, V, for the subsequent charge recombination reaction. We have developed a series of dyad and triad donor-acceptor molecules in which 2J is measured directly as a function of incremental changes in their structures. In the dyads the chromophoric electron donors 4-(N-pyrrolidinyl)- and 4-(N-piperidinyl)naphthalene-1,8-dicarboximide, 5ANI and 6ANI, respectively, and a naphthalene-1,8:4,5-bis(dicarboximide) (NI) acceptor are linked to the meta positions of a phenyl spacer to yield 5ANI-Ph-NI and 6ANI-Ph-NI. In the triads the same structure is used, except that the piperidine in 6ANI is replaced by a piperazine in which a para-X-phenyl, where X = H, F, Cl, MeO, and Me(2)N, is attached to the N' nitrogen to form a para-X-aniline (XAn) donor to give XAn-6ANI-Ph-NI. Photoexcitation yields the respective 5ANI(+)-Ph-NI(-), 6ANI(+)-Ph-NI(-), and XAn(+)-6ANI-Ph-NI(-) singlet radical ion pair states, which undergo subsequent radical pair intersystem crossing followed by charge recombination to yield (3)NI. The radical ion pair distances within the dyads are about 11-12 A, whereas those in the triads are about approximately 16-19 A. The degree of delocalization of charge (and spin) density onto the aniline, and therefore the average distance between the radical ion pairs, is modulated by the para substituent. The (3)NI yields monitored spectroscopically exhibit resonances as a function of magnetic field, which directly yield 2J for the radical ion pairs. A plot of ln 2J versus r(DA), the distance between the centroids of the spin distributions of the two radicals that comprise the pair, yields a slope of -0.5 +/- 0.1. Since both 2J and k(CR), the rate of radical ion pair recombination, are directly proportional to V(2), the observed distance dependence of 2J shows directly that the recombination rates in these molecules obey an exponential distance dependence with beta = 0.5 +/- 0.1 A(-)(1). This technique is very sensitive to small changes in the electronic interaction between the two radicals and can be used to probe subtle structural differences between radical ion pairs produced from photoinduced electron transfer reactions.  相似文献   

4.
Photoexcitation of a series of donor-bridge-acceptor (D-B-A) systems, where D = phenothiazine (PTZ), B = p-phenylene (Phn), n = 1-5, and A= perylene-3,4:9,10-bis(dicarboximide) (PDI) results in rapid electron transfer to produce 1(PTZ+*-Phn-PDI-*). Time-resolved EPR (TREPR) studies of the photogenerated radical pairs (RPs) show that above 150 K, when n = 2-5, the radical pair-intersystem crossing mechanism (RP-ISC) produces spin-correlated radical ion pairs having electron spin polarization patterns indicating that the spin-spin exchange interaction in the radical ion pair is positive, 2J > 0, and is temperature dependent. This temperature dependence is most likely due to structural changes of the p-phenylene bridge. Charge recombination in the RPs generates PTZ-Phn-3*PDI, which exhibits a spin-polarized signal similar to that observed in photosynthetic reaction-center proteins and some biomimetic systems. At temperatures below 150 K and/or at shorter donor-acceptor distances, e.g., when n = 1, PTZ-Phn-3*PDI is also formed from a competitive spin-orbit-intersystem crossing (SO-ISC) mechanism that is a result of direct charge recombination: 1(PTZ+*-Phn-PDI-*) --> PTZ-Phn-3*PDI. This SO-ISC mechanism requires the initial RP intermediate and depends strongly on the orientation of the molecular orbitals involved in the charge recombination as well as the magnitude of 2J.  相似文献   

5.
Understanding how the electronic structures of electron donor-bridge-acceptor (D-B-A) molecules influence the lifetimes of radical ion pairs (RPs) photogenerated within them (D+*-B-A-*) is critical to designing and developing molecular systems for solar energy conversion. A general question that often arises is whether the HOMOs or LUMOs of D, B, and A within D+*-B-A-* are primarily involved in charge recombination. We have developed a new series of D-B-A molecules consisting of a 3,5-dimethyl-4-(9-anthracenyl)julolidine (DMJ-An) electron donor linked to a naphthalene-1,8:4,5-bis(dicarboximide) (NI) acceptor via a series of Phn oligomers, where n = 1-4, to give DMJ-An-Phn-NI. The photoexcited charge transfer state of DMJ-An acts as a high-potential photoreductant to rapidly and nearly quantitatively transfer an electron across the Phn bridge to produce a spin-coherent singlet RP 1(DMJ+*-An-Phn-NI-*). Subsequent radical pair intersystem crossing yields 3(DMJ+*-An-Phn-NI-*). Charge recombination within the triplet RP then gives the neutral triplet state. Time-resolved EPR spectroscopy shows directly that charge recombination of the RP initially produces a spin-polarized triplet state, DMJ-An-Phn-3*NI, that can only be produced by hole transfer involving the HOMOs of D, B, and A within the D-B-A system. After the initial formation of DMJ-An-Phn-3*NI, triplet-triplet energy transfer occurs to produce DMJ-3*An-Phn-NI with rate constants that show a distance dependence consistent with those determined for charge separation and recombination.  相似文献   

6.
It is well known that the molecular structure of an electron donor-acceptor system can be changed to optimize the electronic coupling between photogenerated radical ion pairs (PRPs), resulting in favorable charge separation (CS) and charge recombination (CR) rates. It would be far more convenient to avoid extensive synthetic modifications to the structure to achieve the same ends by perturbing the electronic properties of the PRP. We present here results on PRPs within rodlike donor-acceptor molecules having a covalently attached stable 2,2,6,6-tetramethylpiperidinoxyl radical (T*). The distances and orientations between all three radicals are highly restricted by the intervening molecular structure, making it possible to directly measure both the CR dynamics and the spin-spin exchange interaction, 2JPRP, between the radicals within the PRPs. The molecular triads studied are MeOAn-6ANI-PI-T* and MeOAn-6ANI-NI-T*, where MeOAn = p-methoxyaniline, 6ANI = 4-(N-piperidinyl)naphthalene-1,8-dicarboximide, NI = naphthalene-1,8:4,5-bis(dicarboximide), and PI = pyromellitimide. These molecules have been characterized using femtosecond and nanosecond transient absorption spectroscopy as well as measurements of 2JPRP using magnetic field effects on the triplet state yield resulting from CR. We find that T* enhances radical pair intersystem crossing (EISC), resulting in an increase or decrease in the PRP lifetime depending on the relative ordering of the energy levels of the PRP and the local neutral triplet states. This is especially pronounced when the PRP is nearly isoenergetic with the neutral triplet state, as is the case for MeOAn-6ANI-NI-T*. The dependence of the 3*NI and 3*6ANI yield on an applied external magnetic field shows a distinct resonance at 2JPRP, the magnitude of which is not perturbed by the presence of the third spin. The sensitivity of this system to changes in spin state may offer ways to externally control the radical ion pair dynamics using pulsed microwaves.  相似文献   

7.
1,6- and 1,7-bis(n-octylamino)perylene-3,4:9,10-bis(dicarboximide) were synthesized by reaction of n-octylamine with the corresponding dibromo compounds. These compounds display intense charge-transfer optical transitions in the visible spectrum (approximately 550-750 nm) and fluoresce weakly (Phi(F) < 0.06). Cyclic voltammetry reveals that each chromophore undergoes facile and reversible oxidation and reduction. Spectroelectrochemical studies show that the radical cations of these chromophores are stable and show no signs of deprotonation of the secondary amines. Electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) studies of the chemically generated radical cations of these chromophores corroborate the spectroelectrochemical data by showing that the radical cations persist for days at room temperature in methylene chloride solution. These experiments and complementary density functional theory (DFT) calculations provide a comprehensive picture of the molecular orbitals, spin density distributions, and geometries of the radical cations. The redox properties and stability of these alkylamino-functionalized perylene compounds make them a valuable addition to the family of robust perylene-based chromophores that can be used to develop new photoactive charge transport materials.  相似文献   

8.
A t-butylphenylnitroxide (BPNO*) stable radical is attached to an electron donor-bridge-acceptor (D-B-A) system having well-defined distances between the components: MeOAn-6ANI-Ph(BPNO*)-NI, where MeOAn=p-methoxyaniline, 6ANI=4-(N-piperidinyl)naphthalene-1,8-dicarboximide, Ph=phenyl, and NI=naphthalene-1,8:4,5-bis(dicarboximide). MeOAn-6ANI, BPNO*, and NI are attached to the 1, 3, and 5 positions of the Ph bridge, respectively. Time-resolved optical and EPR spectroscopy show that BPNO* influences the spin dynamics of the photogenerated triradical states 2,4(MeOAn+*-6ANI-Ph(BPNO*)-NI-*), resulting in slower charge recombination within the triradical, as compared to the corresponding biradical lacking BPNO*. The observed spin-spin exchange interaction between the photogenerated radicals MeOAn+* and NI-* is not altered by the presence of BPNO*. However, the increased spin density on the bridge greatly increases radical pair (RP) intersystem crossing from the photogenerated singlet RP to the triplet RP. Rapid formation of the triplet RP makes it possible to observe a biexponential decay of the total RP population with components of tau=740 ps (0.75) and 104 ns (0.25). Kinetic modeling shows that the faster decay rate is due to rapid establishment of an equilibrium between the triplet RP and the neutral triplet state resulting from charge recombination, whereas the slower rate monitors recombination of the singlet RP to ground state.  相似文献   

9.
Ethynyl-bridged porphyrin-corrole dyads and triads were synthesized by using Pd(0) mediated coupling reactions and their structures were characterized by NMR, FT-IR, UV/Vis and fluorescence techniques. Besides spectroscopic techniques, computational studies at B3LYP/6-311G(d,p) level of DFT were also used to elucidate the minimum energy geometries and the molecular orbital characteristics of the new dyads and triads. DFT calculations pointed out the presence of charge separated donor-acceptor property between macrocycles of dyads and triads, and the emission studies indicated an excited state interaction between macrocycles, and energy transfer from the porphyrin to the corrole unit.  相似文献   

10.
A near-IR-emitting sensitizer, boron-chelated tetraarylazadipyrromethane, has been utilized as an electron acceptor to synthesize a series of dyads and triads linked with a well-known electron donor, ferrocene. The structural integrity of the newly synthesized dyads and triads was established by spectroscopic, electrochemical, and computational methods. The DFT calculations revealed a 'molecular clip'-type structure for the triads wherein the donor and acceptor entities were separated by about 14 ?. Differential pulse voltammetry combined with spectroelectrochemical studies have revealed the redox states and estimated the energies of the charge-separated states. Free-energy calculations revealed the charge separation from the covalently linked ferrocene to the singlet excited ADP to yield Fc(+)-ADP(?-) to be energetically favorable. Consequently, the steady-state emission studies revealed quantitative quenching of the ADP fluorescence in all of the investigated dyads and triads. Femtosecond laser flash photolysis studies provided concrete evidence for the occurrence of photoinduced electron transfer in these donor-acceptor systems by providing spectral proof for formation of ADP radical anion (ADP(?-)) which exhibits a diagnostic absorption band in the near-IR region. The kinetics of charge separation and charge recombination measured by monitoring the rise and decay of the ADP(?-) band revealed ultrafast charge separation in these molecular systems. The charge-separation performance of the triads with two ferrocenes and a fluorophenyl-modified ADP macrocycle was found to be superior. Nanosecond transient absorption studies revealed the charge-recombination process to populate the triplet ADP as well as the ground state.  相似文献   

11.
Photoinduced intramolecular charge separation (CS) and recombination (CR) processes of the tetrathiophene-substituted benzene dyads with an amide spacer (4T-PhR, R = 4-H (1), 4-CN (2), 3,4-(CN)2 (3), 4-NO2 (4), 3,5-(NO2)2 (5)) in solvents of different polarities were investigated using various fast spectroscopies. It was revealed that the CS rates depend on the ability of the acceptor and solvent polarity. Ultrafast CS with the rate of 5 x 10(12) s(-1) was revealed for 5 in PhCN and MeCN. The ultrafast CS can be attributed to the large electronic coupling matrix element between the donor and the acceptor despite the relative long donor-acceptor distance. The existence of the state with large electron density on the spacer between 14T*-PhR and LUMO should facilitate the CS process in the present dyad system. It was also revealed that the CR rates in these dyads were rather fast because of the enhanced superexchange interaction through the amide spacer.  相似文献   

12.
The charge-recombination dynamics of two exTTF-C60 dyads (exTTF = 9,10-bis(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene), observed after photoinduced charge separation, are compared in solution and in the solid state. The dyads differ only in the degree of conjugation of the bridge between the donor (exTTF) and the acceptor (C60) moieties. In solution, photoexcitation of the nonconjugated dyad C60-BN-exTTF (1) (BN = 1,1'-binaphthyl) shows slower charge-recombination dynamics compared with the conjugated dyad C60-TVB-exTTF (2) (TVB = bisthienylvinylenebenzene) (lifetimes of 24 and 0.6 micros, respectively), consistent with the expected stronger electronic coupling in the conjugated dyad. However, in solid films, the dynamics are remarkably different, with dyad 2 showing slower recombination dynamics than 1. For dyad 1, recombination dynamics for the solid films are observed to be tenfold faster than in solution, with this acceleration attributed to enhanced electronic coupling between the geminate radical pair in the solid film. In contrast, for dyad 2, the recombination dynamics in the solid film exhibit a lifetime of 7 micros, tenfold slower than that observed for this dyad in solution. These slow recombination dynamics are assigned to the dissociation of the initially formed geminate radical pair to free carriers. Subsequent trapping of the free carriers at film defects results in the observed slow recombination dynamics. It is thus apparent that consideration of solution-phase recombination data is of only limited value in predicting the solid-film behaviour. These results are discussed with reference to the development of organic solar cells based upon molecular donor-acceptor structures.  相似文献   

13.
We show that the energetics and electronic couplings for excess electron transfer (EET) can be accurately estimated by using unoccupied Kohn-Sham orbitals (UKSO) calculated for neutral pi stacks. To assess the performance of different DFT functionals, we use MS-PT2 results for seven pi stacks of nucleobases as reference data. The DFT calculations are carried out by using the local spin density approximation SVWN, two generalized gradient approximation functionals BP86 and BLYP, and two hybrid functionals B3LYP and BH&HLYP. Best estimations within the UKSO approach are obtained by the B3LYP and SVWN methods. TD DFT calculations provide less accurate values of the EET parameters as compared with the UKSO data. Also, the excess charge distribution in the radical anions is well described by the LUMOs of neutral systems. In contrast, spin-unrestricted DFT calculations of radical anions considerably overestimate delocalization of the excess electron. The excellent results obtained for the ground and excited states of the radical anions (excitation energy, transition dipole moment, electronic coupling, and excess electron distribution) by using UKSO of neutral dimers suggest an efficient strategy to calculate the EET parameters for DNA pi stacks.  相似文献   

14.
Reaction of 2,4,6‐trichloro‐1,3,5‐triazine with lithiated tetrathiafulvalene (TTF) in stoichiometric conditions, followed by treatment with sodium methanolate, provides mono‐ and bis(TTF)–triazines as new covalently linked (multi)donor–acceptor systems. Single‐crystal X‐ray analyses reveal planar structures for both compounds, with formation of peculiar segregated donor and acceptor stacks for the mono(TTF)–triazine compound, while mixed TTF–triazine stacks establish in the case of the bis(TTF) derivative. Cyclic voltammetry measurements show reversible oxidation of the TTF units, at rather low potential, with no splitting of the oxidation waves in the case of the dimeric TTF, whereas irreversible reduction of the triazine core is observed. Intramolecular charge transfer is experimentally evidenced through solution electronic absorption spectroscopy. Time‐dependent DFT calculations allow the assignment of the charge transfer band to singlet transitions from the HOMO of the donor(s) to the LUMO of the acceptor. Solution EPR measurements correlated with theoretical calculations were performed in order to characterize the oxidized species. In both cases the spectra show very stable radical species and contain a triplet of doublet pattern, in agreement with the coupling of the unpaired electron with the three TTF protons. The dication of the bis(TTF)–triazine is paramagnetic, but no spin–spin exchange interaction could be detected.  相似文献   

15.
Introduction of a heterocyclic ring and an amino-ethyl-amino group to donor-acceptor (D-A) type photosensitive dyes can modulate the lifetime of the charge separation generated in the D-A dyes as well as their electronic and UV-vis absorption properties. Here we perform density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations to study 11 derivatives of a triphenylamine-pyrimidine, namely MTPA-Pyc, in order to improve the performance of MTPA-Pyc as solar cell sensitizers. Five heterocyclic rings and an amino-ethyl-amino group were introduced on the styryl moiety of MTPA-Pyc. The results show that the introduction of heterocyclic rings generally causes an absorption red shift, but the absorption intensity reduces as a result of the increase in the dihedral angle between the donor and acceptor. Further, introduction of an amino-ethyl-amino group to these dyes with a heterocyclic ring modification disrupts the conjugation between the donor and acceptor, which does not benefit the absorption but may have the potential to increase the lifetime of charge separation of the dyes. We identify 2 out of 11 dyes that have the best potential for solar cell applications.  相似文献   

16.
The complexes (RN=CH-CH=NR)Co(NO)(CO) with R = isopropyl, 2,6-diisopropylphenyl, or p-tolyl are chemically and electrochemically reducible to radical anions at potentials which strongly depend on R. The DFT calculated structure for the neutral compound with R = iPr agrees with the experiment, and the computed structure of the anion radical reveals changes according to a reduction of the R-DAB ligand. EPR results confirm an (R-DAB)-based singly occupied molecular orbital in [(RNCHCHNR)Co(NO)(CO)](.-), with minor but detectable contributions from NO as supported by IR spectroelectrochemistry and as quantified by DFT spin density calculations. The calculations indicate increasingly stabilized CO, NO, and RNCHCHNR pi* acceptor orbitals, in that order. On the basis of TD-DFT (time-dependent density functional theory) calculations, the lowest-lying excited states are assigned to metal-to-(R-DAB) charge transfer transitions while bands due to the metal-to-nitrosyl charge transfer occur at higher energies but still in the visible region. Resonance Raman studies were used to probe these assignments.  相似文献   

17.
Efficient emission from various donor-acceptor quinolines with an ethynyl linkage (PnQ), which are known as efficient electrogenerated chemiluminescent molecules, was observed with time-resolved fluorescence measurement during the pulse radiolysis in benzene. On the basis of the transient absorption and emission measurements, and steady-state measurements, the formation of PnQ in the singlet excited state can be interpreted by charge recombination between the PnQ radical cation and the PnQ radical anion which are generated initially from the radiolytic reaction in benzene. The strong electronic coupling between the donor and acceptor through conjugation is responsible for the efficient emission during the pulse radiolysis of PnQ in benzene. It is suggested that the positive and negative charges are localized on the donor and acceptor moieties in the radical cation and anion, respectively. This mechanism is reasonably explained by the relationship between the annihilation enthalpy changes and singlet excitation energies of PnQ. The formation of the intramolecular charge transfer state is assumed for PnQ in the singlet excited state with a strong electron donating substituent. The emission from PnQ is suggested to originate from PnQ in the singlet excited state formed from the charge recombination between the PnQ radical cation and the PnQ radical anion during the pulse radiolysis. This is strong evidence for the efficient electrogenerated chemiluminescence of PnQ.  相似文献   

18.
High-resolution X-ray diffraction and polarized neutron diffraction experiments have been performed on the Y-semiquinonate complex, Y(HBPz3)2(DTBSQ), in order to determine the charge and spin densities in the paramagnetic ground state, S = (1/2). The aim of these combined studies is to bring new insights to the antiferromagnetic coupling mechanism between the semiquinonate radical and the rare earth ion in the isomorphous Gd(HBPz3)2(DTBSQ) complex. The experimental charge density at 106 K yields detailed information about the bonding between the Y3+ ion and the semiquinonate ligand; the topological charge of the yttrium atom indicates a transfer of about 1.5 electrons from the radical toward the Y3+ ion in the complex, in agreement with DFT calculations. The electron density deformation map reveals well-resolved oxygen lone pairs with one lobe polarized toward the yttrium atom. The determination of the induced spin density at 1.9 K under an applied magnetic field of 9.5 T permits the visualization of the delocalized magnetic orbital of the radical throughout the entire molecule. The spin is mainly distributed on the oxygen atoms [O1 (0.12(1) mu B), O2(0.11(1) mu B)] and the carbon atoms [C21 (0.24(1) mu B), C22(0.20(1) mu B), C24(0.16(1) mu B), C25(0.12(1) mu B)] of the carbonyl ring. A significant spin delocalization on the yttrium site of 0.08(2) mu B is observed, proving that a direct overlap with the radical magnetic orbital can occur at the rare earth site and lead to antiferromagnetic coupling. The DFT calculations are in good quantitative agreement with the experimental charge density results, but they underestimate the spin delocalization of the oxygen toward the yttrium and the carbon atoms of the carbonyl ring.  相似文献   

19.
A series of germanium‐containing triangular molecules have been studied by density functional theory (DFT) calculations. The triangulene topology of the compounds provides for their high‐spin ground states and strong sign alternation of spin density and atomic charge distributions. High values of the exchange coupling constants witness ferromagnetic ordering of electronic structures of all studied triangulenes. The compounds bearing more electronegative atoms in a‐positions of the triangular networks possess higher aromatic character and stronger ferromagnetic ordering. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
Bicyclopropylidene 1a and its octamethyl derivative 1b are subjected to ionization by X-irradiation in solid argon. In accord with previous experiments, this treatment leads to the spontaneous opening of both cyclopropylidene rings, as does ionization of 1b by gamma-irradiation in CFCl(3) at 77 K. The resulting tetramethyleneethane (or bisallyl) radical cations 2a+* and 2b+* are distinguished by a broad band in the NIR. In the case of 2a+*, wavelength-selective photolyses reveal the presence of two interconvertible species with very similar yet distinct spectra. Based on DFT and CASSCF/CASPT2 calculations, these spectra are assigned to two "electromeric" forms of 2a+* which differ in the nature of the singly occupied MO. The NIR bands correspond to charge-resonance transitions between states with fully delocalized spin and charge. Calculations predict that similar electromers should also exist in 2b+* which shows a much weaker NIR band, but no corresponding experimental evidence could be found. On the other hand, the ESR spectrum of 2b+* indicates that, in contrast to 2a+*, the spin is largely localized in one of the two allylic moieties in 2b+*. Although no theoretical method is presently available that would permit an accurate modeling of the opposing factors favoring localized or delocalized structures in molecules such as 2a+* or 2b+*, the observed trends can be satisfactorily rationalized on the basis of semiquantitative considerations. In particular, the important role of vibronic coupling in shaping the potential surfaces for such systems is emphasized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号